
 Using Prototypical Objects
 to Implement Shared Behavior

 in Object Oriented Systems ∗

Henry Lieberman

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, Mass. 02139 USA

Electronic mail (Arpaner):
Henry@AI.AI.MIT.Edu, Henry@MIT-AI

∗ Published In: Proceedings of First ACM Conference on Object-Oriented Programming Systems, Languages and
Applications, Portland, OR, September 1986.

 Abstract

A traditional philosophical controversy between
representing general concepts as abstract sets or
classes and representing concepts as concrete
prototypes is reflected in a controversy between two
mechanisms for sharing behavior between objects in
object oriented programming languages. Inheritance
splits the object world into classes, which encode
behavior shared among a group of instances, which
represent individual members of these sets. The
class/instance distinction is not needed if the
alternative of using prototypes is adopted. A
prototype represents the default behavior for a
concept, and new objects can re-use part of the
knowledge stored in the prototype by saying how the
new object differs from the prototype. The prototype
approach seems to hold some advantages for
representing default knowledge, and incrementally and
dynamically modifying concepts. Delegation is the
mechanism for implementing this in object oriented
languages. After checking its idiosyncratic behavior,
an object can forward a message to prototypes to
invoke more general knowledge. Because class objects
must be created before their instances can be used, and
behavior can only be associated with classes,
inheritance fixes the communication patterns between
objects at instance creation time. Because any object
can be used as a prototype, and any messages can be
forwarded at any time, delegation is the more flexible
and general of the two techniques.

1. Sets vs. prototypes: a
philosophical dilemma with
practical consequences

How do people represent knowledge about
generalizations they make from experience with
concrete situations? Philosophers concerned with the
theory of knowledge have debated this question, but
as we shall see, the issue is not without practical
consequences for the task of representing knowledge
in object oriented systems. Because much of object
oriented programming involves constructing
representations of objects in the real world, our
mechanisms for storing and using real world
knowledge get reflected in mechanisms for dealing
with objects in computer languages. We'll examine
how the traditional controversy between representing
concepts as sets versus representing concepts as
prototypes gives rise to two mechanisms, inheritance
and delegation, for sharing behavior between related
objects in object oriented languages.

When a person has experience in a particular
situation, say concerning a particular elephant named
Clyde, facts about Clyde can often prove useful when
encountering another elephant, say one Fred. If we
have mental representations of a concept for (Clyde,
and a concept for Fred, the question then : How do the
representations of Clyde and Fred share knowledge?
How can we answer questions, such as Fred's color,
number of legs, size, etc. by reference to what we
already know about Clyde? In the absence of any
mechanism for sharing knowledge between related
concepts, we'd have to repeat all the knowledge about
Clyde in a representation of Fred.

There are two points of view we can consider
adopting. The first is based on the idea of abstract

sets. From learning about Clyde, we can construct a
concept of the set [or class] of elephants, which
abstracts out what we believe is true about all
individual animals sufficiently similar to Clyde to be
called elephants. The description of the set can
enumerate all the "essential" properties of elephants.
We can view Clyde as a member or instance of this
class. In an object oriented system, the set approach
involves creating an object to represent the set of
elephants, and establishing a link representing the
membership relation between the object representing
Clyde and the set object. Since the description of the
set represents what is true about all its members, we
can answer questions about Clyde by referring to the
description of the set. Establishing the same kind of
membership link between Fred and the set of
elephants enables Fred and Clyde to share some of the
same knowledge. If Fred and Clyde share some
additional properties, such as that of being Indian
elephants, that are not shared by some other
elephants, these can be embodied in a subclass object,
which shares all the properties of the elephant set,
adjoining the additional properties relevant to India.

But there's an alternative point of view. We can
consider Clyde to represent the concept of a
prototypical elephant. If I ask you to "think of an
elephant", no doubt the mental image of some
particular elephant will pop to mind, complete with
the characteristics of gray color, trunk, etc. If Clyde
was the elephant most familiar to you, the
prototypical elephant might be an image of Clyde
himself. If I ask you a question such as "How many
legs does an elephant have?", a way to answer the
question is to assume that the answer is the same as
how many legs Clyde has, unless there's a good
reason to think otherwise. The concept of Fred can
have a connection marking its prototype as Clyde, as
a mechanism for sharing information between the two
weighty pachyderms. The description of Fred can
store any information that is unique to Fred himself.
If I ask "How many legs does Fred have?", you
assume the answer is the same for Fred as for Clyde,
in the absence of any contrary evidence. If you then
learn that Fred is a three-legged elephant, that
knowledge is stored with Fred and is always searched
before reference to the prototype is made.

2. Prototypes have advantages for
incremental learning of concepts

Though the concept of a set has proven fruitful in
mathematics, the prototype approach in some ways
corresponds more closely to the way people seem to

acquire knowledge from concrete situations. The
difficulty with sets stems from their abstractness;
people seem to be a lot better at dealing with specific
examples first, then generalizing from them than they
are at absorbing general abstract principles first, and
later applying them in particular cases. Prototype
systems allow creating individual concepts first, then
generalizing them by saying what aspects of the
concept are allowed to vary. Set-oriented systems
require creating the abstract description of the set first,
before individual instances can be installed as
members.

In mathematics, sets are defined either by enumerating
their members, or by describing the unifying
principles that identify membership in the set. We
can neither enumerate all the elephants, nor are we
good at making definitive lists the essential properties
of an elephant. Yet the major impetus for creating
new concepts always seems to be experience with
examples. If Clyde is our only experience with
elephants, our concept of an elephant can really be no
different than the concept of Clyde. After meeting
other elephants, the analogies we make between
concepts like Fred and Clyde serve to pick out the
important characteristics of elephants.

Prototypes seem to be better at expressing knowledge
about defaults. If we assert grayness as one of the
identifying characteristics of membership in the set of
elephants, we can't say that there are exceptional
white elephants without risking contradictions. Yet it
is easy to say that Fred, the white elephant, is just
like Clyde, except that he is white. As Wittgenstein
observed, it is difficult to say, in advance, exactly
what characteristics are essential for a concept. It
seems that as new examples arise, people can always
make new analogies to previous concepts that
preserve some of the "defaults" for that concept and
ignore others.

3. Inheritance implements sets,
delegation implements prototypes

Having set the stage with our philosophical
discussion of the issues of concept representation, we
turn now to how these issues affect the more
mundane details of implementation of object oriented
programming systems.

Implementing the set-theoretic approach to sharing
knowledge in object oriented systems is traditionally
done by a mechanism called inheritance, first
pioneered by the language Simula, later adopted by

SmallTalk, flavors and Loops, among others. An
object called a class encodes common behavior for a
set of objects. A class also has a description of what
characteristics are allowed to vary among members of
the set. Classes have the power to generate instance
objects, which represent members of a set. All
instances of a class share the same behavior, but can
maintain unique values for a set of state variables
predeclared by the class. To represent Clyde, you
create a description for the class elephant, with an
instance variable for the elephant's name, values of
which can be used to distinguish Clyde and Fred. A
class can give rise to subclasses, which add additional
variables and behavior to the class.

Implementing the prototype approach to sharing
knowledge in object oriented systems is an alternative
mechanism called delegation, appearing in the actor
languages, and several Lisp-based object oriented
systems such as Director [Kahn 79], T [Rees 85],
Orbit [Steels 82], and others. Delegation removes the
distinction between classes and instances. Any object
can serve as a prototype. To create an object that
shares knowledge with a prototype, you construct an
extension object, which has a list containing its
prototypes which may be shared with other objects,
and personal behavior idiosyncratic to the object
itself. When an extension object receives a message,
it first attempts to respond to the message using the
behavior stored in its personal part. If the object's
personal characteristics are not relevant for answering
the message, the object forwards the message on to
the prototypes to see if one can respond to the
message. This process of forwarding is called
delegating the message. Fred the elephant would be an
extension object that stored behavior unique to Fred
in its personal part, and referenced the prototype
Clyde in its shared part.

4. Tools for representing behavior
and internal state are the building
blocks of object oriented systems

Each object oriented system must provide some
linguistic mechanisms for defining the behavior of
objects. The philosophy of object oriented
programming is to use the object representation to
encode both the procedures and data of conventional
languages. Rather than define the procedural behavior
or the data content of an object all at once, it is
convenient to break both aspects of an object into a
set of parts that can be accessed or modified
individually by name.

An object’s internal state consists of variables or
acquaintances, which can be accessed in most object
oriented systems by sending the object a message
consisting of the variable's name. An object's
procedure for responding to messages [in actors, we
say its script] can be composed of a set of procedures
called methods, each of which is specialized for
handling only a certain subset of the messages the
object receives, identified by name. Breaking up an
object's state into named variables means that
different portions of the state can be modified
incrementally, without affecting the others. Breaking
up an object's behavior into named methods means
that different portions of the behavior can be modified
incrementally, without affecting the others. The
language must then provide ways of combining
groups of methods and variables to form objects and
some means of allowing an object to share behavior
[implemented as methods and variables] residing in
previously defined objects. We will call these
composite objects extensions. These building blocks
are represented in the illustration “Tools for sharing
knowledge” with “icons” to be used in further
discussion.

Many object oriented languages supply primitive
linguistic mechanisms for creating objects with
methods, variables and extensions. An alternative
approach, which is advocated in the actor formalism,
is to define methods, variables and extensions as
objects in their own right, with their behavior
determined by a message passing protocol among
them. Obviously, an object representing a method
cannot itself have methods, otherwise infinite
recursion would result. Using simple objects
primitive to the system, a variable is defined to be an
object that remembers a name and a value, and
responds to access and modification messages. A
method responds only to those messages for which it
is designed, rejecting others. Extension objects use
delegation to forward messages from one part of the
object to another to locate the appropriate response.

Everyone who is already convinced of the utility of
object oriented programming shouldn't have much
trouble discerning the advantages of using object
oriented programming in the implementation of the
knowledge sharing mechanisms. Foremost among
them is the ability to define other kinds of objects
which implement alternatives to the standard
versions. Instead of an ordinary variable, one might
like to have “active” variables that take action when
changed, “read-only” variables, maybe even “write-
only” variables, each of which could be defined as a

different type of variable object. Alternative kinds of
method objects can use differing strategies to combine
behavior from contributing components, replacing the
so-called “method combination” feature of the flavors
system and making “multiple inheritance” easier.
Different kinds of extension objects can make
different efficiency tradeoffs on the issue of copying
versus sharing.

 Tools for Sharing Knowledge

Methods
Objects which have a
procedure for responding
only to a particular kind of
message

Variables
Objects which store a
value and can respond to
messages to change it

Extensions
Objects which have a personal set of
methods and variables and have a
pointer to an object with shared
knowledge

The mechanisms for sharing knowledge in object
oriented languages have now grown so complicated
that it is impossible to reach universal consensus on
the best mechanism. Using object oriented
programming itself to implement the basic building
blocks of state and behavior is the best approach for
allowing experimentation and co-existence among
competing formalisms.

5. A Logo example illustrates the
differences between delegation
and inheritance

An example from the domain of Logo turtle graphics
will illustrate how the choice between delegation and
inheritance affects the control and data structures in an
object oriented system. The delegation approach is

illustrated in the figure titled “Sharing Knowledge
with Delegation”. The first thing we would like to do
is create an object representing a pen, which
remembers a location on the screen, and can be moved
to a different location, drawing lines between the old
and new locations.

 Sharing Knowledge with Delegation

A Pen at

(50, 200)

Delegates to

Delegates to A Pen at

(100, 200)

A Turtle at

(50, 200) with

heading 90

X

50

Y

200

Draw

Forward

Heading

90

Draw

100

X

We start out by creating a prototypical pen object,
which has a specific location on the screen x=200,
y=50, and behavior to respond to the draw message.
When we would like to create a new pen object, we
need only describe what's different about the new pen
from the first one, in this case the x variable. Since
the y is the same and behavior for the draw message
is the same, these need not be repeated.

The draw method will have to use the value of the x
variable, and it's important that the correct value of x
is used. When the draw method is delegated from the
new pen to the old pen, even though the draw method
of the original pen is invoked, it should be the x of
the new pen that is used.

To insure this, whenever a message is delegated, it
must also pass along the object that originally
received the message. This is called the SELF
variable in Simula, SmallTalk and flavors, although I
find the term “self” a little misleading, since a method
originally defined for one kind of object often winds
up sending to a “self” of a different kind. In actor
terminology, this object is called the client, since the
object being delegated to can be thought of as
performing a service for the original object. When a

pen delegates a draw message to a prototypical pen, it
is saying “I don't know how to handle the draw
message. I'd like you answer it for me if you can, but
if you have any further questions, like what is the
value of my x variable, or need anything done, you
should come back to me and ask.” If the message is
delegated further, all questions about the values of
variables or requests to reply to messages are all
inferred to the object that delegated the message in the
first place.

Suppose now we'd like to create a turtle at the same
location as the original pen, using the original pen as
a prototype. How is a turtle different from a pen? A
turtle shares some of the behavior of a pen, but has
additional state, namely it's heading. Remembering a
heading is essential in implementing the additional
behavior of being able to respond to forward and back
messages by relying on the behavior of the response
to the draw message. We may choose either to
provide a new behavior for the turtle’s draw operation,
or rely on the draw operation provided by the original
pen.

Let's look at the same example with the inheritance
approach to sharing knowledge as found in Simula
and SmallTalk instead of delegation. This is
illustrated in the figure titled “Sharing knowledge
with inheritance”. With inheritance, it is necessary to
create objects representing classes. To make a pen, it
is first necessary to make a pen class object, which
specifies both the behavior and the names of
variables.

Individual pens are created by supplying values for all
the instance variables of the pen class, creating an
instance object. Values for all the variables must be
specified, even if they do not have unique values in
the instance. No new behavior may be attached to an
individual pen. Extending behavior is accomplished
by a different operation, that of creating a new
subclass. The step which goes from an instance to
behavior stored in its class is performed by a “hard-
wired” lookup loop in systems like Simula and
SmallTalk, not by message passing, as in the
delegation approach.

To extend pens with new behavior, we must first
create a new class object. Here a turtle class adds a
new heading along with new behavior for the forward
message. Notice that the variables from the pen class,
x and y, were copied down into the turtle class. An
individual turtle instance must supply values for all
the variables of its class, superclass, and so on. This

copying leads to larger instance objects for classes
further and further down the inheritance hierarchy. The
lookup of methods, performed by a primitive,
unchangeable routine instead of message passing,
starts a search for methods in the class of an object,
and proceeds up the subclass-to-superclass chain.

How does a method inherited from the pen class to
the turtle class access a method implemented in the
turtle class? Since inheritance systems usually do not
use message passing to communicate from subclass
to superclass, they can't pass the turtle object along
in the message, as we would in delegation.

 Sharing Knowledge with Inheritance

Pen Cla ss

Subcl ass

A P en a t
(50, 200)

Instance

A Turtle a t

(50, 2 00) w it h

heading 90

100 200

X Y

Forward

Y
X

Heading

Draw

200 50

Y
X

90
Heading

Draw

X

50 X

Y Y

200

50

XX

200

X

50 200

YY

200

Y

50

X

200

Heading

A P en a t
(100, 200)

50

XX

200100

X

200

Y Y

200

X

X

Y Y

Forwar d

Draw

Heading

Instan ce

Turtle Class

Instead most use variable binding to bind a special
variable self to the object that originally receives a
message. We shall see later on that this leads to
trouble.

In addition, inheritance systems also allow the
“shortcut” of binding all the variables of an instance
so that they can be referenced directly by code naming
in methods as free variables. While this is sometimes
more efficient, it short-circuits the message passing
mechanism, defeating the independence of internal
representation which is the hallmark of object
oriented programming. Since variable references use
different linguistic syntax than message sends, if we

wanted to change the coordinate representation from x
and y to polar coordinates using rho and theta, we'd
have to change all the referencing methods. Sticking
to message passing to access x and y means that even
if the coordinates were changed to polar, we could
still provide methods that compute the rectangular
coordinates from the polar, and the change would be
transparent.

I hope these diagrams leave you with the impression
that the delegation approach is simpler. To create two
pens and a turtle, the inheritance approach requires the
additional steps of creating pen class objects and turtle
class objects. Also, we have to have two different
kinds of links between objects, the subclass link and
the instance link, whereas the delegation approach
only requires a message passing relationship between
the linked objects.

6. Are inheritance and delegation
equally powerful?

An obvious question to ask about the preceding
discussion of inheritance and delegation is whether the
two techniques have the same expressive power. The
answer is no.

Given delegation, it is easy to see how we could
implement the functionality of inheritance. We can
create special class objects that respond to messages
to create new instances. We need only arrange that the
class objects observe the copying of variables from
the superclass chain when they create instances.
Instance objects are given behavior that implements
the lookup methods, roughly as follows.

If I 'm an INSTANCE object
and I receive a message
with a SELECTOR and some ARGUMENTS :

If the SELECTOR matches
one of the VARIABLE names
in my CLASS [or SUPERCLASS, etc.] ,

I return the corresponding value,
s tored in myse l f .

Otherwise, I look for a METHOD
whose NAME matches

the SELECTOR of the message
in the l is t of local METHODS

of my CLASS.
I f I f ind one,

I bind the var iable SELF to myself
[the INSTANCE object] .

I b ind the names of
the var iables of my CLASS,

[and al l the var iables

up the SUPERCLASS chain]
to their values in the INSTANCE.

 Then I invoke the METHOD.
If there’s no method

in my CLASS’s METHOD l ist,
 I t ry to f ind a method

in the SUPERCLASS,
and so on up the SUPERCLASS chain.

How about the other way? Can inheritance implement
delegation? Unfortunately not. The reason is a little
tricky to understand, but it has to do with the
treatment of the self variable, which prevents a proper
implementation of forwarding of messages.

Often, a method for handling a message may need to
ask the object that originally received the message to
perform some service. A turtle object which receives
a back message would like to turn it into a forward
message sent to the same object, but negating the
number of steps, so that back 100 is like forward
-100. In delegation, when a method is delegated a
message, it receives a component called the client in
the delegate message, which has the object that
originally received the message.

In inheritance systems, a distinguished variable named
self is automatically bound to the recipient of a
message during the execution of code for a method.
When the method search proceeds from the original
class to a superclass, the value of the self variable
doesn't change, so that superclass methods can reply
to the message “as if” they were methods of the
original object. However, when a user sends a
message, the self variable is always re-bound, so that
it is generally not possible for the user to designate
another object to reply in place of the object which
originally received the message. True delegation
cannot be implemented in these systems.

An example, illustrated in the figure “The SELF
Problem,” will make this clear. Suppose we would
like to extend a particular turtle object to create a
turtle which draws dashed instead of solid lines. The
obvious way to do this is to have the dashed-turtle
intercept the forward message and break up the
interval into pieces, delegating a message to draw a
series of shorter lines to a solid-line turtle. If, in an
inheritance system, the dashed-line turtle simply
sends a forward message to the solid-line turtle, then
self will be bound to the solid-line turtle. Our earlier
implementation of back in terms of forward will then
stop working, since a message to the dashed-line

turtle to go back will try to send a forward message to
self and draw a solid line instead!

Be careful about confusing this example with an
alternative implementation using inheritance systems,
which would create a dashed-turtle class as a subclass
of solid-turtle class. While such an implementation
could have the correct behavior with respect to the
back message, it still wouldn't count as an
implementation of delegation. Remember, what we
were trying to do was to see if an object could forward
messages to some other already existing object. A
dashed turtle instance wouldn't be forwarding any
messages to an instance of solid turtle, since it would
just inherit copies of the variables and methods from
solid turtle.

7. What about efficiency?

The efficiency comparison between delegation and
inheritance boils down to time/space tradeoffs. Some
have argued that inheritance is more efficient because
it requires fewer messages, but this comes at the cost
of increasing the size of objects. Because variables are
copied down from superclass to subclass, instances
become larger and larger the farther down you get in
the inheritance hierarchy. With delegation, each object
need only specify what's different about it from
already existing prototypes, so the size of objects
does not necessarily depend on the depth in the
hierarchy of shared objects. A look at the diagram
illustrating the data structures for pen and turtle
objects will confirm inheritance’s speed advantage and
delegation's space advantage.

Smaller objects make for faster object creation times,
which can be important in systems that create large
numbers of small objects with short lifetimes, as
opposed to small numbers of large objects with long
lifetimes. Reducing the size of objects may also
improve the efficiency of virtual memory, by
improving locality of reference, allowing a higher
density of frequently referenced objects in the primary
memory. With a copying garbage collector, such as
that described in [Lieberman and Hewitt 83], smaller
objects can improve the efficiency of garbage
collection by reducing the copying overhead.

Implementors shouldn't get scared away by the search
required to find methods and variables in the
delegation approach. There's a simple, effective trick
for reducing the search time: caching the result of
lookups. Caches are a way of trading space for speed,
mitigating any negative effects of the speed-for-space

tradeoff made by delegation. Caches make a more
effective use of the extra memory than
indiscriminately copying instance variables, because
the memory they do use is sure to be in constant use.
Caches don't restrict flexibility in interactively
modifying the programming environment the way
copying and compilation optimizations do.

 The "SELF" problem

A Turtle that
draws solid lines

When I’m asked to go BACK some STEPS;
I send a FORWARD message,
negating the number of STEPS,
 to “whoever got the BACK message”
[“SELF”].

A Turtle that
draws dashed lines

Fo rw ard

Back

Fo rw ard

When I'm asked to go FORWARD,
I ask the Turtle who draws solid lines
to go FORWARD short distances,
alternately with the pen up and down
until the distance is covered.

On conventional machines, probably no
implementation of delegation is going to surpass
variable lookup via registers and stack indexing for
raw speed. But in their zeal to speed up variable
lookup, implementors have forced decisions such as
large object size on object-oriented languages, which
adversely affect efficiency. Parallel machines with
large address spaces will make the attractiveness of
such register-oriented optimizations fade.

SmallTalk [Krasner 84] reports a 93% "hit rate" for a
moderately sized cache, 1000 objects. This means that
any savings by inheritance over delegation in lookup
could at best affect the remaining 7%. The best thing
to do seems to be to keep a global cache, and
invalidate it whenever any changes are made to the
sharing hierarchy. A change will then slow the
system down for the next 1000 messages, or whatever

time the cache takes to fill up again. “Smarter”
alternatives, such as per-object caches are probably
not worth the extra trouble they would cause for
incremental software modification, since the hit rate
on a global cache is so high. Since both inheritance
and delegation can be implemented almost equally
efficiently, it seems that there's little reason to
sacrifice the extra flexibility of delegation on
efficiency grounds.

8. Re-directing I/O streams illustrates
an important application of
delegation

Many object oriented systems make good use of
object oriented programming techniques to implement
input-output streams. Such a stream is an object that
receives messages to input or output a character, a
line of text, an expression. Systems usually have
global variables designating the “current” sources of
input and output, which is by default bound to an
object representing the stream of characters being
displayed on the window of a screen of an interactive
display.

The name “stream” suggests the continual flow of
characters or pixels between the user and the system.
A very useful kind of object is that which
implements a “dam” to divert the stream to other
destinations, or “plumbing” which connects one
stream with another. A dribble file is a sequential file
maintaining a record on disk of the history of input-
output interactions, to provide a more permanent
recording of interactions than the ephemeral twinkling
of pixels. A dribble file can be implemented by
replacing the stream which represents interactions at
the terminal with one that writes them to disk also.

The dribble stream needs the ability to masquerade as
the terminal stream. It should have the same
responses to all the messages that the ordinary
terminal stream has, and also provide the additional
behavior of writing to the disk. The streams should
be considered indistinguishable from the point of
view of all programs which perform input-output.

To implement the dribble stream cleanly, we'd like it
to be the case that the implementation of the dribble
stream shouldn't have to know the precise details of
the implementation of the stream which it is
replacing. We might, for example, like to use a
single dribble stream with both a stream to a directly
connected interactive terminal and a stream interacting
over a network.

 Can a dribble stream “masquerade” as a terminal
 stream?

Terminal Stream

I/O streams protected by
queues from timing errors
due to parallel writes

Disk
Stream

Delegates to

Dribble Stream

Read

Char I nput

Char O utp ut

Print

Char Ou tpu t

Char I npu t

Char Outpu t

The implementation using delegation is convenient
and straightforward. Messages which do character
output are intercepted and the disk output is
interposed.

A DRIBBLE-STREAM is an object
that logs interact ion on a STREAM,
and records i t on disk using a FILE-

NAME
If I'm a DRIBBLE-STREAM and

I get a massage to input or output
a CHARACTER,

I output the CHARACTER
to the disk stream to the FILE-

NAME.
Then I delegate the message

to output a CHARACTER
to the or ig inal STREAM.

If I'm a DRIBBLE-STREAM and
I get any other message,
I s imply de legate the message

to the STREAM.
It works to take care of only the single-character input
and output messages because presumably all higher
level messages, like print of an object, are ultimately
implemented in terms of the single-character versions.
The method which performs a higher level print
operation would ultimately send a character output
message to its client [send to self].

Surprisingly, many inheritance systems make it
difficult to implement this simple extension to the
behavior of streams. One villain is the insistence of
systems like flavors and SmallTalk on defining
separate procedures for handling each type of message.
Attempting to try to implement dribble-stream as a
subclass of stream in systems of this ilk, we would
find that there's no easy way to say “... and send all of
the irrelevant messages through to the original
stream”. We would be forced to define one method to
intercept the character output message to write to the
disk, another to intercept the print message, another
to intercept the print-line message, and so on for
every relevant message. Every time another message
was added to the original stream another method
would have to be added to the dribble-stream, with
tediously repetitive code. This also has the
unfortunate effect of making the implementation of
dribble-stream now sensitive to the details of exactly
which messages its embedded stream accepts,
inhibiting the ability to re-use the implementation
with different types of streams.

Adding to the system the definition of a dribble-
stream class or flavor would only give the ability to
create new instances of dribble stream objects. It
would not be possible to create a dribble stream
which used a previously existing stream object. We'd
then have to make new terminal streams, network
streams, or other kind of streams, to be able to take
advantage of the recording functionality. We shouldn't
have to reproduce every kind of stream in the system
just to have the dribble capability!

If, instead, we attempt to make a dribble stream
which holds the interaction stream as one of its
instance variables, we face the problem that there is
no way for the dribble stream to correctly forward a
message like print to the value of the variable.
Because of the way these systems handle the self
variable, the forwarding of messages to the original
stream won't work, for the same reason as in the
turtle example. Sending a print message to the
instance variable would re-bind the self variable, so it
would result in sending lower-level messages directly
to the interaction stream and not to the dribble
stream. So it seems as though any straightforward
attempt to implement the dribble stream as a simple
behavioral extension in many inheritance systems is
doomed.

9. Parallelism causes problems in
inheritance systems because of the
SELF variable

There’s an additional problem in the case that the
stream can accept messages from more than one
parallel process. Because the stream holds modifiable
state [such as a screen bitmap], the stream must be
protected against timing errors resulting from two
processes trying to write to the stream at the same
time. A technique such as serializer objects [Hewitt,
Attardi, Lieberman 79] or monitors must be used.
This means that when the stream receives a write
message, it “locks”, so that subsequent messages to
the stream must wait in a queue for the stream to
finish processing the first write message.

Now, if a message to a dribble stream tries to process
a print message by sending a character-output
message to the self variable, it will find self bound to
a stream which is locked waiting for that very print
message to complete! Deadlock!

Since delegation uses message passing, when the
dribble stream delegates to a terminal system it can
supply [as the client in the delegate message] an
unserialized version of itself, which can process the
message without waiting.

10. Delegation is more flexible than
inheritance for combining
behavior from multiple sources

Often, an object will want to utilize behavior that
appears in more than one other already existing
object. The behavior that a system needs to
implement a particular “feature” can be packaged up
as a single object, and sometimes an object will want
to combine several of these features to implement its
behavior. For example, window objects might have
titles, borders, size adjustments, etc. A particular
window object may choose some of these features and
not others. Features may be independent of one
another, or they may interact.

The solution in inheritance systems is to create a
class object that mentions a list of other classes
whose behavior it wishes to sham. All the methods
and variables mentioned in any of the classes are
inherited by the combined object. Systems like
flavors allow optionally, on a per-method basis,
supplying an option for how to combine behavior
when more than one component contributes a
method. Typical options are to invoke all the
contributing methods, impose an order on them, or
return a list of the results.

The problem with this style of combining behavior
from multiple sources is that it fixes the pattern of
communication between objects before the time an
instance object is created. This limits the extent to
which behavior from previously existing objects can
be used dynamically. By contrast, with delegation, the
communication patterns can be determined at the time
a message is received by an object.

With delegation, a method for an extension object can
simply access the prototypical objects from which it
derives behavior on the shared list. A window which
wants to invoke the draw action of a previously
defined rectangle object acting as its borders can
simply delegate the draw message to the rectangle
object. Thus delegation doesn’t require “method
combination” or an inventory of esoteric combining
operations. The behavior is simply programmed in
the method for the combined extension object. Should
a programmer wish to build a library of common
combination techniques, it is easily done by
constructing variants on the standard method object,
so delegation could be made as concise as method
combination in inheritance systems. With
inheritance, if a window class includes a “borders
mixin”, the window does not contain an independent
object representing its borders, so it is not possible to
send a message to the borders of a window
independent of the window object itself. The window
class merely contains a mixture of the methods and
variables inherited from the borders and other
contributing components.

In highly responsive interactive systems, it is often
necessary to wait until a message is received to
determine how behavior from component objects will
be utilized. Here's a simple example in which
dynamic utilization of behavior from multiple sources
is required, illustrated in the figure “Delegation allows
communication patterns to be decided at run time”.

A bordered bitmap can be built from a rectangle,
which can display its borders, and a bitmap which can
transfer an array of pixels to the screen. What should
the draw response for the bordered bitmap be? With
inheritance you create a bordered-bitmap class that
inherits both from rectangle and bitmap, saying that
both draw methods are to be used. Fine.

But now suppose we'd like to give the user the option
of changing dynamically which behavior is used.
When the bitmap is dragged across the screen, the
transfer of the entire array on every mouse movement
might be too slow, so it might be preferable to give

the user the option of just dragging the outline of the
bitmap instead. A reasonable thing to do is to give
the user an on-screen toggle switch to decide the
behavior, and the user can potentially change the
behavior at any time. So the behavior of the bordered
bitmap cannot be decided before the object is created.
With delegation, when the bordered bitmap gets a
draw message, it can decide whether to delegate the
message to the rectangle object that it contains, or to
the bitmap object, or both.

 Delegation allows communication patterns to be
 decided at run time

A Rectangle A Bitmap

A Bordered Bitmap

We can't say which
DRAW methos will
be used at compile
time or object creation
time Drag Bitmap

Drag Borders

DrawDraw

Draw

Inheritance systems are also plagued by what I call
the one-instance class problem. When systems are
composed of large numbers of objects with slightly
varying behavior, you wind up having to create new
class objects often just to have one or a few
instances. It is necessary to create ad-hoc classes such
as “window with a wide border, times roman font and
no title” just to combine features for a single
instance.

11. Delegation is advantageous for
highly interactive, incremental
software development

An important issue to consider when evaluating the
tradeoffs between inheritance and delegation is the
consequences for incremental software development.

As we have seen above, inheritance tends to
encourage copying of variables and methods, while
delegation encourages sharing. If a prototypical object
changes behavior, then all objects which mention that
prototype on their shared list will automatically “feel”
the change. If changes are made to an inheritance
hierarchy, such as adding a new instance variable, or
changing the class structure, information copied from
the old data structure may be rendered obsolete.
Broadcasting the result of changes to copies puts a
burden on the operations which make incremental
changes in the software environment. An extreme
example of this occurs in the flavors system where
simply adding a method to vanilla-flavor, the root of
the inheritance hierarchy, results in recompilation of
every flavor in the entire system! This effectively
prohibits any modifications to objects near the top of
the inheritance hierarchy.

Though delegation has been the minority viewpoint
in object oriented languages, it is slowly becoming
recognized as important for its added power and
flexibility. Part of the reason for neglect of the
delegation approach has been historical. Simula, one
of the first object oriented languages, adopted the
inheritance technique. It fixed communication patterns
between objects at compile time, as was appropriate
for a compiled language of the Algol family. The
specific mechanisms for this were then “inherited” by
SmallTalk and others, without reconsidering whether
the approach was still appropriate for an interpretive
language in a more highly interactive programming
environment. I hope the preceding discussion has
convinced you that the approach of modeling concepts
using prototypes and implementing behavior in
object oriented languages using delegation has distinct
advantages over the alternative point of view using
classes and inheritance.

12. Acknowledgments

Major support for the work described in this paper
was provided by the System Development
Foundation. Other related work at the MIT Artificial
Intelligence Laboratory was supported in part by
DARPA under ONR contract N00014-80-C-0505.

Carl Hewitt's ideas concerning actors, and especially
the impact of parallelism on object-oriented
programming were important influences. Kenneth
Kahn and Luc Steels implemented object-oriented
languages which adopted delegation mechanisms and
also influenced these ideas. Alan Borning reached
similar conclusions in the context of the ThingLab

system implemented in SmallTalk. Koen de Smedt
provided a helpful critique of a talk I gave on these
issues in Nijmegen, the Netherlands.

References

[Birtwistle, Dahl, Myhrhaug, and Nygaard 73]
G. M. Birtwistle, O-J Dahl, B.
Myhrhaug, K. Nygaard.
Simula Begin.
Van Nostrand Reinhold, New
York, 1973.

[Bobrow 85] D. Bobrow, K. Kahn, M. Stefik,
G. Kiczales.
Common Loops.
Technical Report, Xerox Palo Alto

Research Center, 1985.

[Bobrow, Stefik 83]
Daniel Bobrow and Mark Stefik.
Knowledge Programming in Loops.
Al Magazine, August, 1983.

[Borning 86] Alan Borning.
Classes Venus Prototypes in

Object-Oriented Languages.
In Fall Joint Computer Conference.

ACM/IEEE, Dallas, Texas,
November, 1986.

[Goldberg, Robson 83]
Adele Goldberg and David Robson.
SmallTalk-80: The Language and

its Implementation.
Addison-Wesley, Reading, MA,

1983.
[Hewitt 79] Carl Hewitt.

Viewing Control Structures as
Patterns of Passing Messages.

In P. Winston and R. Brown [eds.],
Artificial Intelligence, an MIT
Perspective. MIT Press,
Cambridge, MA, 1979.

[Hewitt, Attardi, Lieberman 79]
Carl Hewitt, Giuseppe Attardi, and
Henry Lieberman.
Security And Modularity In

Message Passing.
In First Conference on Distributed

Computing. IEEE, Huntsville,
1979.

[Kahn 79] Kenneth Kahn.
Creation of Computer Animation

from Story Descriptions.
Ph.D. thesis, Massachusetts

Institute of Technology, 1979.

[Krasner 84] Glenn Krasner, editor.
SmallTalk-80: Bits of H istory and

Words of Advice.
Addison-Wesley, New York, 1984.

[Lieberman 86a] Henry Lieberman.
Concurrent Object Oriented

Programming in Act 1.
In A. Yonezawa and Tokoro [eds.],

Concurrent Object Oriented
Programming. NUT Press,
Cambridge, MA, 1986.

[Lieberman 86b]Henry Lieberman.
Delegation and Inheritance: Two

Mechanisms for Sharing
Knowledge in Object Oriented
Systems.

In J. Bezivin, P. Cointe [eds.],
3eme Journees d’Etudes
Languages Orientes Objets.
AFCET, Paris, France, 1986.

[Lieberman and Hewitt 83]
Henry Lieberman and Carl Hewitt.
A Real Time Garbage Collector

Based on the Lifetimes of
Objects.

CACM 26(6), June, 1983.

[Moon, Weinreb 84]
David Moon, Daniel Weinreb, et al.
Lisp Machine Manual.
Symbolics, Inc. and MIT,

Cambridge, MA, 1994.

[Rees 85] Jonathan Rees, et al.
The T Manual.
Technical Report, Yale University,

1985.

[Steels 82] Luc Steels.
An Applicative View of Object

Oriented Programming.
Technical Report Al Memo 15,

Schlumberger-Doll Research,
March, 1982.

