Using Prototypical Objects

to Implement Shared Behavior

in Object Oriented Systems

Henry Lieberman

Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Mass. 02139 USA

Electronic mail (Arpaner):
Henry@AILAILMIT.Edu, Henry@MIT-Al

Abstract

A traditional philosophical controversy between
representinggeneral conceptsas abstract ses or

classes and representing concepts as concrete
prototypesis reflectedin a controversybetweentwo

mechanismgor sharingbehaviorbetweenobjectsin

object oriented programming languages.Inheritance
splits the object world into classes which encode
behaviorsharedamonga group of instances which

representindividual membersof these sets. The
class/instancedistinction is not needed if the
alternative of using prototypes is adopted. A

prototype representsthe default behavior for a
concept,and new objects can re-use part of the
knowledgestoredin the prototypeby sayinghow the
newobject differs from the prototype.The prototype
approach seems to hold some advantages for

representinglefaultknowledge andincrementallyand
dynamically modifying concepts.Delegation is the
mechanisnfor implementingthis in object oriented
languagesAfter checkingits idiosyncratic behavior,
an object can forward a messageto prototypesto

invoke moregeneraknowledge Becauselassobjects
mustbe createcbeforetheirinstancesanbe used,and
behavior can only be associatedwith classes,
inheritancefixes the communicationpatternsbetween
objectsat instancecreationtime. Becauseany object
canbeusedas a prototype,andany messagesanbe
forwardedat anytime, delegationis the more flexible

andgenerabf thetwo techniques.

1. Sets vs. prototypes: a
philosophical dilemma with
practical consequences

PPublished In: Proceedings of First ACM Conference on Object-Oriented Programming Systems, Languages and

Applications, Portland, OR, September 1986.

How do people represent knowledge about
generalizationsthey make from experience with

concretesituations?Philosophersoncernedvith the

theory of knowledgehave debatecthis question,but

as we shall see,the issueis not without practical
consequence®r the task of representingknowledge
in objectorientedsystems.Becausemuch of object
oriented programming involves constructing
representationsof objects in the real world, our

mechanisms for storing and using real world

knowledgeget reflectedin mechanismsfor dealing
with objectsin computerlanguagesWe'll examine
how the traditional controversybetweenrepresenting
conceptsas sets versus representing concepts as
prototypeggivesriseto two mechanismsinheritance
anddelegation for sharingbehaviorbetweenrelated
objectsin objectorientedanguages.

When a person has experience in a particular
situation,say concerninga particularelephanthamed
Clyde,factsaboutClyde canoften prove usefulwhen

encounteringanotherelephab, say one Fred. If we

have mentalrepresentationsf a conceptfor (Clyde,

anda concepffor Fred,the questiorthen: How dothe

representation®f Clyde and Fred shareknowledge?
How canwe answerquestionssuchas Fred'scolor,

numberof legs, size, etc. by referenceto what we

alreadyknow about Clyde? In the absenceof any

mechanismfor sharing knowledge between related
conceptsye'dhaveto repeatall the knowledgeabout
Clydein arepresentatioof Fred.

There are two points of view we can considr
adopting. The first is basedon the idea of abstract

sets.From learningaboutClyde, we canconstructa

conceptof the set [or class] of elephants which

abstractsout what we believe is true about all

individual animalssufficiently similar to Clyde to be

called elephants.The description of the set can
enumeratall the "essential"propertiesof elephants.
We canview Clyde asa memberor instanceof this

class.In an objectorientedsystem,the set approach
involves creatingan objectto representthe set of

elephantsand establishinga link representingthe

membershigelation betweenthe object representing
Clydeandthe set object. Sincethe descriptionof the

setrepresentsvhatis true aboutall its memberswe

cananswerquestionsaboutClyde by referringto the

descriptionof the set. Establishingthe samekind of

membership link between Fred and the set of

elephant&nabled-redandClydeto sharesomeof the

same knowledge. If Fred and Clyde share some
additional properties, such as that of being Indian

elephants,that are not shared by some other
elephantsthesecanbe embodiedn a subclassbject,

which sharesall the propertiesof the elephantset,

adjoiningthe additionalpropertieselevantto India.

But there'san alternative point of view. We can
consider Clyde to representthe concept of a

prototypical elephant If | ask you to "think of an

elephant”, no doubt the mental image of some
particularelephantwill popto mind, completewith

the characteristicof gray color, trunk, etc. If Clyde

was the elephant most familiar to you, the

prototypical elephantmight be animage of Clyde

himself.If | askyou a questionsuchas"How many
legs doesan elephanthave?",a way to answerthe

guestions to assumehat the answeris the sameas
how many legs Clyde has, unlessthere'sa good
reasonto think otherwise.The conceptof Fred can

havea connectiormarkingits prototypeas Clyde, as

amechanisnfor sharinginformationbetweerthe two

weighty pachyderms.The description of Fred can

storeany informationthatis uniqueto Fredhimself.

If I ask "How many legs does Fred have?", you

assumehe answelis the samefor Fredasfor Clyde,

in the absencef any contraryevidencelf you then

learn that Fred is a three-leggedelephant, that

knowledgeis storedwith Fredandis alwayssearched
beforereferenceo the prototypeis made.

2. Prototypes have advantages for
incremental learning of concepts

Thoughthe conceptof a set has proven fruitful in
mathematicsthe prototype approachin some ways
correspondsnore closelyto the way peopleseemto

acquire knowledge from concrete situations. The
difficulty with sets stemsfrom their abstractness;
peopleseento bealot betterat dealingwith specific
exampledirst, thengeneralizingrom themthan they
areat absorbinggeneralabstractprinciples first, and
later applying them in particular cases. Prototype
systemaallow creatingindividual conceptdirst, then
generalizingthem by saying what aspectsof the
conceptare allowed to vary. Set-orientd systems
requirecreatingthe abstractlescriptionof the setfirst,
before individual instances can be installed as
members.

In mathematicssetsaredefinedeitherby enumerating
their members, or by describing the unifying

principles that identify membershipin the set. We

canneither enumerateall the elephantsnor are we

goodat makingdefinitive lists the essentiaproperties
of an elephant.Yet the major impetusfor creating
new conceptsalways seemsto be experiencewith

examples.If Clyde is our only experience with

elephantspur concepof anelephantanreally be no

different than the conceptof Clyde. After meeting
other elephants,the analogieswe make between
conceptdike Fred and Clyde serveto pick out the

importantcharacteristicef elephants.

Prototypesseento be betterat expressingknowledge
about defaults.If we assertgraynessas one of the
identifying characteristicef membershipn the set of

elephants,we can't say that there are exceptional
white elephantsvithout risking contradictions.Yet it

is easyto saythat Fred,the white elephant,is just
like Clyde, exceptthat he is white. As Wittgenstein
observed,t is difficult to say, in advance,exactly
what characteristicsare essentialfor a concept. It

seemghatasnew examplesarise, peoplecanalways
make new analogiesto previous concepts that
preservesomeof the "defaults” for that conceptand
ignoreothers.

3. Inheritance implements sets,
delegation implements prototypes

Having set the stage with our philosophical
discussiorof theissuesof conceptrepresentationwe
turn now to how these issues affect the more
mundanaletailsof implementationof objectoriented
programmingsystems.

Implementingthe set-theoreticapproachto sharing
knowledgein objectorientedsystemsis traditionally
done by a mechanism called inheritance first
pioneeredby the languageSimula, later adoptedby

SmallTalk, flavors and Loops, among others. An
objectcalleda class encodessommonbehaviorfor a
setof objects.A classalsohasa descriptionof what
characteristicareallowedto vary amongmembersof
the set. Classeshavethe powerto generateinstance
objects, which representmembersof a set. All
instance®f a classsharethe samebehavior,but can
maintain unique valuesfor a set of state variables
predeclaredby the class. To representClyde, you
createa descriptionfor the classelephant,with an
instancevariable for the elephant'sname, values of
which canbe usedto distinguishClyde and Fred. A
classcangive riseto subclasseswhich addadditional
variablesandbehaviorto the class.

Implementing the prototype approachto sharing
knowledgein objectorientedsystemss an alternative
mechanisncalled delegation appearingin the actor

languages,and several Lisp-based object oriented
systemssuch as Director [Kahn 79], T [Rees 85],

Orbit [Steels82], andothers.Delegationremovesthe

distinctionbetweerclassesandinstancesAny object

can serveas a prototype.To createan object that

shareknowledgewith a prototype you constructan

extensionobject, which has a list containing its

prototypeswhich may be sharedwith other objects,
and personal behavior idiosyncratic to the object

itself. Whenan extensionobjectreceivesa message,
it first attemptsto respondto the messagaising the

behaviorstoredin its personalpart. If the object's
personakharacteristicare not relevantfor answering
the messagethe object forwards the messageon to

the prototypesto seeif one can respondto the

message. This process of forwarding is called

delegatingthe messagerredthe elephantvould bean

extensionobjectthat storedbehaviorunique to Fred

in its personalpart, and referencedthe prototype
Clydein its sharedart.

4. Tools for representing behavior
and internal state are the building
blocks of object oriented systems

Each object oriented system must provide some
linguistic mechanismdor defining the behavior of
objects. The philosophy of object oriented
programmingis to use the object representatiorto
encodeboth the proceduresand dataof conventional
languagesRatherthan definethe procedurabehavior
or the datacontentof an object all at once, it is
convenientto breakboth aspectof an objectinto a
set of parts that can be accessedor modified
individually by name.

An object’s internalstate consistsof variables or
acquaintanceswhich canbe accesseth most object
orientedsystemsby sendingthe object a message
consisting of the variable's name. An object's
procedurefor respondingo messagegin actors, we
sayits scripfl canbe composedf a setof procedures
called methods each of which is specializedfor
handling only a certain subsetof the messageshe
objectreceives,identified by name.Breakingup an
object's state into named variables means that
different portions of the state can be modified
incrementally,without affectingthe others.Breaking
up an object'sbehaviorinto namedmethodsmeans
thatdifferentportionsof the behaviorcan be modified
incrementally, without affecting the othes. The
language must then provide ways of combining
groupsof methodsandvariablesto form objectsand
somemeansof allowing an objectto sharebehavior
[implementedas methodsand variables]residing in
previously defined objects. We will call these
compositeobjectsextensions Thesebuilding blocks
arerepresentedn the illustration “Tools for sharing
knowledgé with “icons” to be used in further
discussion.

Many object oriented languagessupply primitive
linguistic mechanismsfor creating objects with
methods, variables and extensions.An alternative
approachwhich is advocatedn the actorformalism,
is to define methods,variablesand extensionsas
objects in their own right, with their behavior
determinedby a messagepassingprotocol among
them. Obviously, an object representinga method
cannot itself have methods, otherwise infinite
recursion would result. Using simple objects
primitive to the systemavariableis definedto be an
object that remembersa name and a value, and
respondsto acces and modification messagesA
methodrespond®nly to thosemessage$or which it
is designed rejecting others. Extensionobjects use
delegationto forward messagefrom one part of the
objectto anotherto locatethe appropriataesponse.

Everyonewho is alreadyconvincedof the utility of

object oriented programming shouldn't have much
trouble discerningthe advantagesof using object
orientedprogrammingin the implementationof the
knowledge sharing mechanisms.Foremost among
themis the ability to define other kinds of objects
which implement alternatives to the standard
versions.Insteadof an ordinary variable, one might
like to have“active” variablesthat take action when
changed,‘read-only” variables, maybe even “write-

only” variables,eachof which could be definedas a

different type of variableobject. Alternative kinds of
methodobjectscanusediffering strategieso combine
behaviorfrom contributingcomponentsieplacingthe
so-called'methodcombination”featureof the flavors
system and making “multiple inheritance” easier.
Different kinds of extension objects can make
different efficiency tradeoffson the issue of copying
versussharing.

Tools for Sharing Knowledge

Methods

Objects which have a
procedure for responding
only to a particular kind of

message

Variables
90 Objects which store a
value and can respond to
messages to change it

Heading

Extensions

Objects which have a personal set of
methods and variables and have a
pointer to an object with shared
knowledge

N
n/ﬂ

The mechanismsfor sharing knowledge in object
orientedlanguageshave now grown so complicated
thatit is impossibleto reachuniversalconsensusn
the best mechanism. Using object oriented
programmingitself to implementthe basic building
blocks of stateandbehavioris the bestapproachfor
allowing experimentatin and co-existence among
competingformalisms.

5. A Logo example illustrates the
differences between delegation
and inheritance

An examplefrom thedomainof Logo turtle graphics
will illustratehow the choicebetweendelegationand
inheritanceaffectsthe controlanddatastructuresn an
object oriented system.The delegationapproachis

illustratedin the figure titled “Sharing Knowledge
with Delegatiori. Thefirst thingwewouldlike to do
is create an object representinga pen, which
remembers locaion on the screenandcanbe moved
to a differentlocation, drawing lines betweenthe old
andnewlocations.

Sharing Knowledge with Delegation

A Pen at
(50, 200)

K Delegates to

‘®’ APen at
(100, 200)

Delegates to

— i A Turtle at
Heading (50, 200) with
heading 90

We start out by creatinga prototypical pen object,
which has a specific location on the screenx=200,
y=50, andbehaviorto respondto the draw message.
Whenwe would like to createa new penobject, we
needonly describewvhat'sdifferent aboutthe new pen
from the first one,in this casethe x variable.Since
they is the sameandbehaviorfor the draw messge
is the same theseneednot berepeated.

Thedrawmethodwill haveto usethe value of the x
variable,andit's importantthatthe correctvalue of x
is used Whenthe draw methodis delegatedrom the
newpento the old pen,eventhoughthe draw method
of the original penis invoked,it shouldbe the x of
thenewpenthatis used.

To insurethis, whenevera messagds delegatedjt
must also pass along the object that originally
received the message.This is called the SELF
variablein Simula,SmallTalk andflavors,althoughl
find theterm“self” alittle misleadingsincea method
originally definedfor one kind of objectoften winds
up sendingto a “self” of a different kind. In actor
terminology,this objectis calledthe client, sincethe
object being delegatedto can be thought of as
performinga servicefor the original object. When a

pendelegates drawmessagéo a prototypicalpen, it
is saying “I don't know how to handlethe draw
message.d like you answelit for meif you can, but
if you have any further questions,like what is the
value of my x variable,or needanything done, you
shouldcomebackto me andask.” If the messagés
delegatedfurther, all questionsabout the values of
variables or requeststo reply to messagesre all
inferredto the objectthat delegatedhe messagén the
first place.

Supposamow we'd like to createa turtle at the same
locationasthe original pen,usingthe original penas
a prototype.How is a turtle differentfrom a pen?A
turtle sharessomeof the behaviorof a pen, but has
additionalstate,namelyit's heading.Rememberinga
headingis essentialin implementingthe additional
behaviorof beingableto respondo forward andback
messageby relying on the behaviorof the response
to the draw message.We may choose either to
providea newbehaviorfor theturtle’s drawoperation,
or rely on the drawoperationprovidedby the original
pen.

Let'slook at the sameexamplewith the inheritance
approachto sharingknowledgeas found in Simula
and SmallTak instead of delegation. This is

illustrated in the figure titled “Sharing knowledge
with inheritancé. With inheritanceijt is necessaryo

createobjectsrepresentinglassesTo makea pen, it

is first necessaryo makea pen classobject, which

specifies both the behavior and the names of

variables.

Individual pensarecreatedy supplyingvaluesfor all

the instancevariablesof the pen class, creating an

instanceobject. Valuesfor all the variablesmust be

specified,evenif they do not have unique valuesin

theinstanceNo new behaviormay be attachedo an

individual pen. Extendingbehavioris accomplished
by a different operation, that of creating a new
subclassThe step which goesfrom an instanceto

behaviorstoredin its classis performedby a “hard-

wired” lookup loop in systemslike Simula and
SmallTalk, not by messagepassing, as in the

delegatiorapproach.

To extendpenswith new behavior, we must first
createa new classobject. Here a turtle classaddsa
new headingalongwith new behavor for the forward
messageNoticethatthevariablesfrom the penclass,
x andy, were copieddowninto the turtle class.An
individual turtle instancemust supply valuesfor all
thevariablesof its class,superclassandso on. This

copying leadsto larger instanceobjects for classes
furtherandfurtherdowntheinheritancehierarchy.The

lookup of methods, performed by a primitive,

unchangeableaoutine instead of messagepassing,
startsa searchfor methodsin the classof an object,
andproceedsip the subclass-to-superclaskain.

How doesa methodinherited from the pen classto

the turtle classaccessa methodimplementedin the

turtle class?Sinceinheritancesystemsusually do not

usemessaggassingto communicatefrom subclass
to superclassthey can'tpassthe turtle object along

in themessageaswe wouldin delegation.

Sharing Knowledge with Inheritance

Pen Class

?é

APenat

Instan ce (50. 200)

(\
Subclass }

APenat
(100, 200)

ATurtleat

Instance (50, 200) with

heading 90

Insteadmost use variable binding to bind a special
variableself to the object that originally receivesa
messageWe shall see later on that this leadsto
trouble.

In addition, inheritance systems also allow the
“shortcut” of binding all the variablesof an instance
sothatthey canbereferencedlirectly by codenaming
in methodsasfreevariablesWhile this is sometimes
more efficient, it short-circuitsthe messagepassing
mechanism,defeatingthe independenceof internal
representationwhich is the hallmark of object
orientedprogramming.Since variable referenceuse
different linguistic syntaxthan messageends,f we

wantedto changehe coordinateaepresentatiofirom x

andy to polar coordinatesusingrho and theta, we'd
haveto changeall the referencingmethods.Sticking

to messag@assingo accesx andy meansthat even
if the coordinateswere changedto polar, we could

still provide methodsthat compute the rectangular
coordinatesrom the polar, andthe changewould be

transparent.

| hopethesediagramsleaveyou with the impression
thatthe delegatiorapproachs simpler.To createtwo
pensanda turtle, theinheritan@ approachequiresthe
additionalstepsof creatingpenclassobjectsandturtle
classobjects. Also, we haveto have two different
kindsof links betweenobjects,the subclasdink and
the instancelink, whereasthe delegationapproach
only requiresa messagassingrelationshipbetween
thelinked objects.

6. Are inheritance and delegation
equally powerful?

An obvious questionto ask about the preceding
discussiorof inheritanceanddelegationis whetherthe
two techniqgueshavethe sameexpressivegpowe. The
answelis no.

Given delegation,it is easyto see how we could
implementthe functionality of inheritance.We can
createspecialclassobjectsthat respondto messages
to createnewinstancesWe needonly arrangethat the
classobjectsobservethe copying of variablesfrom
the superclasschain when they create instances.
Instanceobjectsare given behaviorthat implements
thelookup methodsroughlyasfollows.

If I'm an INSTANCE object
and | receive a message
with a SELECTOR and some ARGUMENTS:
If the SELECTOR matches
one of the VARIABLE names
in my CLASS [or SUPERCLASS, etc.],
I return the corresponding value,
stored in myself.
Otherwise, | look for a METHOD
whose NAME matches
the SELECTOR of the message
in the list of local METHODS
of my CLASS.
If | find one,
| bind the variable SELF to myself
[the INSTANCE object].
| bind the names of
the variables of my CLASS,
[and all the variables

up the SUPERCLASS chain]

to their values in the INSTANCE.
Then | invoke the METHOD.
If there’'s no method

in my CLASS’'s METHOD list,

I try to find a method

in the SUPERCLASS,

and so on up the SUPERCLASS chain.

How aboutthe otherway?Caninheritancamplement
delegationUnfortunatelynot. The reasonis a little
tricky to understand,but it has to do with the
treatmenbf the self variable which preventsa proper
implementatiorof forwardingof messages.

Often,amethodfor handlinga messagenay needto

askthe objectthat originally receivedthe messagéeo

performsomeservice.A turtle object which receives
a backmessagevould like to turnit into a forward

messagesentto the sameobject, but negating the

numberof steps,so that back 100 is like forward

-100. In delegation,when a method is delegateda
messaget receivesa componentalledthe client in

the delegate message,which has the object that
originally receivedhe message.

In inheritancesystemsa distinguishedrariablenamed
self is automatically bound to the recipient of a
messagealuring the executionof codefor a method.
Whenthe method searchproceedsfrom the original
classto a superclassthe value of the self variable
doesn'tchange so that superclassnethodscan reply
to the message‘as if” they were methodsof the
original object. However, when a user sends a
messagethe self variableis alwaysre-bound,so that
it is generallynot possiblefor the userto designate
anotherobjectto reply in placeof the object which
originally received the message.True delegation
cannotbeimplementedn thesesystems.

An example,illustrated in the figure “The SELF
Problem,”will make this clear. Supposewe would
like to extenda particularturtle object to createa
turtle which drawsdashednsteadof solid lines. The
obviousway to do this is to havethe dashed-turtle
intercept the forward messageand break up the
interval into pieces,delegatinga messageo draw a
seriesof shorterlines to a solid-line turtle. If, in an
inheritance system, the dashed-lineturtle simply
sendsa forward messagéo the solid-line turtle, then
selfwill beboundto the solid-line turtle. Our earlier
implementatiorof backin termsof forward will then
stop working, since a messageto the dashed-line

turtle to go backwill try to sendaforwardmessagé¢o
selfanddrawa solid line instead!

Be careful about confusing this example with an

alternativeimplementatiorusinginheritancesystems,
which would createa dashed-turtlelassas a subclass
of solid-turtle class. While such an implementation
could have the correct behaviorwith respectto the

back message,it still wouldn't count as an

implementationof delegation.Rememberwhat we

weretrying to dowasto seeif anobjectcouldforward

messages$o some other already existing object. A

dashedturtle instancewouldn't be forwarding any
messageto aninstanceof solidturtle, sinceit would

justinheritcopiesof the variablesand methodsfrom

solidturtle.

7. What about efficiency?

The efficiency comparisonbetween delegation and
inheritanceboils downto time/spaceradeoffs.Some
havearguedhat inheritanceis more efficient because
it requiresfewermessagedyutthis comesat the cost
of increasinghe sizeof objects.Becauseariablesare
copieddown from superclasgo subclass,instances
becomelarger andlargerthe fartherdownyou getin
theinheritancehierarchy With delegationgachobject
need only specify what's different about it from
alreadyexisting prototypes, so the size of objects
does not necessarilydependon the depth in the
hierarchy of sharedobjects.A look at the diagram
illustrating the data structuresfor pen and turtle
objectswill confirminheritance’speedadvantageand
delegation'spaceadvantage.

Smallerobjectsmakefor fasterobject creationtimes,

which canbe importantin systemsthat createlarge
numbersof small objects with short lifetimes, as
opposedo smallnumbersof large objectswith long

lifetimes. Reducingthe size of objects may also
improve the efficiency of virtual memory, by

improving locality of reference,allowing a higher
densityof frequentlyreferenceabjectsin the primary

memory.With a copying garbagecollector, such as
that describedn [LiebermanandHewitt 83], smaller
objects can improve the efficiency of garbage
collectionby reducingthe copyingoverhead.

Implementorshouldn'tgetscarecaway by the search
required to find methods and variables in the
delegationapproachThere'sa simple, effective trick
for reducingthe searchtime: caching the result of
lookups.Cachesareaway of trading spacefor speed,
mitigating any negativeeffectsof the speed-for-space

tradeoff made by delegation.Cachesmake a more
effective use of the extra memory than
indiscriminately copying instancevariables,because
thememorytheydouseis sureto bein constantuse.
Caches don't restrict flexibility in interactively
modifying the programming environmenthe way
copyingandcompilationoptimizationsdo.

The "SELF" problem

A Turtle that
draws solid lines

E5>

When I'm asked to go BACK some STEPS;
| send a FORWARD message,

negating the number of STEPS,

to “whoever got the BACK message”
[“SELF".

o> ™
A Turtle that
draws dashed lines

When I'm asked to go FORWARD,

| ask the Turtle who draws solid lines
to go FORWARD short distances,
alternately with the pen up and down
until the distance is covered.

On conventional machines, probably no

implementationof delegationis going to surpass
variablelookup via registersand stack indexing for

raw speed.But in their zeal to speedup variable
lookup, implementorshaveforced decisionssuch as
large object size on object-orientedanguageswhich

adverselyaffect efficiency. Parallel machineswith

large addressspaceswill make the attractivenessof

suchregister-oriente@ptimizationsfade.

SmallTalk[Krasner84] reportsa 93% "hit rate"for a
moderatelysizedcache,10000bjects.This meanghat
anysavingsby inheritanceover delegationin lookup
couldat bestaffecttheremaining7%. The bestthing
to do seemsto be to keep a global cache, and
invalidateit wheneverany changesare madeto the
sharing hierarchy. A change will then slow the
systemdownfor the next1000messagesr whatever

time the cachetakesto fill up again. “Smarter”
alternatives,such as per-objectcachesare probably
not worth the extra trouble they would causefor
incrementalsoftwaremodification, since the hit rate
on a global cacheis so high.Sinceboth inheritance
and delegationcan be implementedalmost equally
efficiently, it seemsthat there's little reason to
sacrifice the extra flexibility of delegation on
efficiencygrounds.

8. Re-directing I/O streams illustrates
an important application of
delegation

Many object oriented systemsmake good use of
objectorientedprogrammingechniqueso implement
input-outputstreams Sucha streamis an objectthat
receivesmessages$o input or output a character,a
line of text, an expression.Systemsusually have
global variablesdesignang the “current” sourcesof
input and output, which is by defaultboundto an
object representingthe stream of charactersbeing
displayedon thewindow of a screenof an interactive
display.

The name“stream” suggestshe continual flow of
charactersr pixels betweenthe userandthe system.
A very useful kind of object is that which
implementsa “dam” to divert the streamto other
destinations,or “plumbing” which connects one
streamwith anotherA dribblefile is a sequentiafile
maintaininga recod on disk of the history of input-
output interactions,to provide a more permanent
recordingof interactionghanthe ephemeratwinkling
of pixels. A dribble file can be implemented by
replacingthe streamwhich representsnteractionsat
theterminalwith onethatwritesthemto disk also.

Thedribble streamneedsthe ability to masqueradas
the terminal stream. It should have the same
responsesto all the messagesthat the ordinary
terminal streamhas, and also provide the additional
behaviorof writing to the disk. The streamsshould
be consideredindistinguishablefrom the point of
view of all programswhich performinput-output.

To implementthedribble streamcleanly, we'd like it

to bethe casethat the implementationof the dribble
streamshouldn'thaveto know the precisedetails of
the implementation of the stream which it is

replacing. We might, for example,like to use a
singledribble streamwith both a streamto a directly
connectednteractiveterminalanda streaminteracting
overanetwok.

Can a dribble stream “masquerade” as a terminal
stream?

Terminal Stream

?* —

) 1/0 streams protected by
ueues from timing errors
ue to parallel writes

5 Disk
Stream

Delegates to

Dribble Stream

The implementationusing delegationis convenient
and straightforward. Messageswhich do character
output are intercepted and the disk output is
interposed.

A DRIBBLE-STREAM is an object
that logs interaction on a STREAM,
and records it on disk using a FILE-
NAME
If I'm a DRIBBLE-STREAM and
| get a massage to input or output
a CHARACTER,
| output the CHARACTER
to the disk stream to the FILE-
NAME.
Then | delegate the message
to output a CHARACTER
to the original STREAM.
If I'm a DRIBBLE-STREAM and
| get any other message,
| simply delegate the message
to the STREAM.
It worksto takecareof only the single-characteinput
andoutput messagedecausepresumablyall higher
level messagedike print of an object, are ultimately
implementedn termsof the single-characteversions.
The method which performs a higher level print
operationwould ultimately send a characteroutput
messagto its client[sendto self].

Surprisingly, many inheritance systems make it
difficult to implementthis simple extensionto the
behaviorof streamsOnevillain is the insistenceof
systemslike flavors and SmallTalk on defining
separatgrocedure$or handlingeachtype of message.
Attemptingto try to implementdribble-streamas a
subclasof streamin systemsof this ilk, we would
find thatthere'sno easywayto say"... andsendall of
the irrelevant messagesthrough to the original
stream”.Wewould beforcedto defineone methodto
interceptthe characteoutput messageo write to the
disk, anotherto interceptthe print messageanother
to interceptthe print-line messageand so on for
everyrelevantmessageEvery time anothermessage
was addedto the original stream another method
would haveto be addedto the dribble-streamwith
tediously repetitive code. This also has the
unfortunateeffect of making the implementationof
dribble-streamow sensitiveto the detailsof exactly
which messagesits embedded stream accepts,
inhibiting the abiity to re-usethe implementation
with differenttypesof streams.

Adding to the systemthe definition of a dribble-
streamclassor flavor would only give the ability to
create new instancesof dribble stream objects. It
would not be possibleto createa dribble stream
which useda previously existing streamobject. We'd
then haveto make new terminal streams,network
streamspr otherkind of streamsto be ableto take
advantagef therecordingfunctionality. We shouldn't
haveto reproduceeverykind of streamin the system
justto havethedribble capability!

If, instead,we attemptto make a dribble stream
which holds the interaction stream as one of its
instancevariables,we facethe problemthat thereis
no way for the dribble streamto correctly forward a
messagelike print to the value of the variable.
Becauseof the way these systemshandle the self
variable,the forwarding of messageso the original
streamwon't work, for the samereasonas in the
turtle example. Sending a print messageto the
instancevariablewould re-bindthe self variable,so it
wouldresultin sendinglower-level messageslirectly
to the interaction stream and not to the dribble
stream.So it seemsas though any straightforward
attemptto implementthe dribble streamas a simple
behavioralextensionin many inheritancesystemsis
doomed.

9. Parallelism causes problems in
inheritance systems because of the
SELF variable

There’s an additional problemin the casethat the
stream can acceptmessagesfrom more than one
parallelprocessBecausédhe streamholds modifiable
state[such as a screenbitmap], the streammust be
protectedagainsttiming errors resulting from two
processesrying to write to the streamat the same
time. A techniguesuchas serializerobjects [Hewitt,
Attardi, Lieberman79] or monitors must be used.
This meansthat when the streamreceivesa write
messageit “locks”, so that subsequentmessageso
the streammust wait in a queuefor the streamto
finish processinghefirst write message.

Now, if amesageto adribblestreamtries to process
a print messageby sending a character-output
messag¢o the selfvariable,it will find self boundto
a streamwhich is lockedwaiting for that very print
messag¢o complete!Deadlock!

Since delegationuses messagepassing, when the
dribble streamdelegatedo a terminal systemit can
supply [as the client in the delegatemessagelan
unserializedversionof itself, which can processthe
messagevithout waiting.

10. Delegation is more flexible than
inheritance for combining
behavior from multiple sources

Often, an object will want to utilize behavior that
appearsin more than one other already existing
object. The behavior that a system needs to
implementa particular“feature” can be packagedup
asasingleobject,andsometimesnobjectwill want
to combineseverabf thesefeaturesto implementits
behavior.For example,window objects might have
titles, borders, size adjustments,etc. A particular
window objectmay choosesomeof thesefeaturesand
not others Featuresmay be independentof one
anotheror they mayinteract.

The solution in inheritancesystemsis to createa
class object that mentions a list of other classes
whosebehaviorit wishesto sham.All the methods
and variables mentionedin any of the classesare
inherited by the combined object. Systems like

flavors allow optionally, on a per-methodbasis,
supplying an option for how to combine behavior
when more than one component contributes a
method. Typical options are to invoke all the
contributingmethodsjmpose an order on them, or

returnalist of theresults.

The problemwith this style of combining behavior
from multiple sourceds thatit fixes the pattern of
communicationbetweenobjects before the time an
instanceobjectis created.This limits the extentto
which behaviorfrom previously existing objectscan
be useddynamically.By contrastwith delegationthe
communicatiorpatternscanbe determinedat the time
amessagés receivedby anobject.

With delegationa methodfor anextensionobject can
simply accesghe prototypical objectsfrom which it
derivesbehavioron the sharedist. A window which
wants to invoke the draw action of a previously
defined rectangleobject acting as its borders can
simply delegatethe draw messageto the rectangle
object. Thus delegation doesn't require “method
combination”or aninventory of esotericcombining
operations.The behavioris simply programmedin
the methodfor the combinedextensiorobject.Should
a programmerwish to build a library of common
combination techniques, it is easily done by
constructingvariantson the standardmethod object,
so delegationcould be madeas concise as method
combination in inheritance systems. With
inheritance,if a window class includes a “borders
mixin”, the window doesnot containan independent
objectrepresentingts borderssoit is not possibleto
send a messageto the borders of a window
independendf the window objectitself. The window
classmerely containsa mixture of the methodsand
variables inherited from the borders and other
contributingcomponents.

In highly responsivanteractivesystems,it is often
necessanto wait until a messageis received to
determinehow behaviorfrom componenibjectswill
be utilized. Here's a simple example in which
dynamicutilization of behaviorfrom multiple sources
is requiredjllustratedin thefigure “Delegationallows
communicatiorpatternsto be decidecht run time’.

A borderedbitmap can be built from a rectangle,
which candisplayits bordersanda bitmapwhich can
transferanarrayof pixels to the screenWhat should
the draw responsedor the borderedbitmap be? With
inheritanceyou create a bordered-bitmapclass that
inherits both from rectangleandbitmap, saying that
bothdrawmethodsareto beused Fine.

But now supposeve'dlike to give the userthe option
of changing dynamically which behavior is used.
When the bitmap is draggedacrossthe screen,the
transferof the entirearrayon every mousemovement
might betoo slow, so it might be preferableto give

theuserthe option of just draggingthe outline of the
bitmap instead.A reasonabl¢hing to do is to give

the user an on-screentoggle switch to decidethe
behavior, and the user can potentially change the
behaviorat anytime. So the behaviorof the bordered
bitmapcannotbe decidedbeforethe objectis created.
With delegation,when the borderedbitmap gets a
drawmessageit can decidewhetherto delegatethe

messageo therectangleobjectthat it contains,or to

thebitmapobiject,or both.

Delegation allows communication patterns to be
decided at run time

< D

A Rectangle

N
EE

A Bordered Bitmap

A Bitmap

We can't say which
DRAW methos will
be used at compile
time or object creation

time ©Drag Bitmap
@) Drag Borders

Inheritancesystemsare also plaguedby what | call
the one-instanceclass problem When systemsare
composedf large numbersof objectswith slightly
varying behavior,you wind up havingto createnew
class objects often just to have one or a few
instanceslt is necessaryo createad-hocclassessuch
as"window with awide border timesromanfont and
no title” just to combine features for a single
instance.

11. Delegation is advantageous for
highly interactive, incremental
software development

An importantissueto considerwhen evaluatingthe
tradeoffs betweeninheritance and delegationis the
consequencefor incrementalsoftware development.

As we have seen above, inheritance tends to

encouragecopying of variablesand methods, while

delegatiorencouragesharing.If a prototypicalobject
changedehavior thenall objectswhich mentionthat
prototypeon their sharedist will automaticallyfeel”

the change.If changesare madeto an inheritance
hierarchy,suchas addinga new instancevariable, or

changingthe classstructure,information copiedfrom

the old data structure may be rendered obsolete.
Broadcastinghe result of changesto copiesputs a
burden on the operationswhich make incremental
changesin the software environment.An extreme
exampleof this occursin the flavors systemwhere
simply addinga methodto vanilla-flavor, the root of

the inheritancehierarchy,resultsin recompilationof

every flavor in the entire system! This effectively
prohibitsany modificationsto objectsnearthe top of

theinheritancehierarchy.

Thoughdelegationhasbeenthe minority viewpoint
in objectorientedlanguagesijt is slowly becoming
recognizedas important for its added power and
flexibility. Part of the reasonfor neglect of the
delegationapproachhasbeenhistorical. Simula, one
of the first object oriented languages,adoptedthe
inheritancetechniquelt fixed communicatiorpatterns
betweenobjectsat compile time, as was appropriate
for a compiled languageof the Algol family. The
specificmechanismsor this werethen “inherited” by

SmallTalk andothers,without reconsideringvhether
the approachwasstill appropriatefor an interpretive
languagen a more highly interactive programming
environment.l hope the preceding discussion has
convincedyou thatthe approactof modelingconcepts
using prototypes and implementing behavior in

objectorientedanguagesisingdelegatiorhasdistinct
advantagesver the alternative point of view using
classesandinheritance.

12. Acknowledgments

Major supportfor the work describedin this paper
was provided by the System Development
Foundation.Otherrelatedwork at the MIT Artificial
Intelligence Laboratory was supportedin part by
DARPA underONR contractN00014-80-C-0505.

Carl Hewitt's ideasconcerningactors, and especially
the impact of parallelism on object-oriented
programming were important influences. Kenneth
Kahn and Luc Steels implemented object-oriented
languagesvhich adopteddelegationmechanismsand
also influenced theseideas. Alan Borning reached
similar conclusionsin the contextof the ThingLab

systemimplementedin SmallTalk. Koen de Smedt
provideda helpful critique of atalk | gave on these
issuesn Nijmegen,the Netherlands.

References

[Birtwistle, Dahl, Myhrhaug, and Nygaard 73]
G. M. Birtwistle, O-J Dahl, B.
Myhrhaug, K. Nygaard.
Simula Begin
Van Nostrand Reinhold, New
York, 1973.

[Bobrow 85] D. Bobrow, K. Kahn, M. Stefik,

G. Kiczales.

Common Loops

Technical Report, Xerox Palo Alto

Research Center, 1985.

[Bobrow, Stefik 83]
Daniel Bobrow and Mark Stefik.
Knowledge Programming in Loops.
Al Magazine August, 1983.
[Borning 86] Alan Borning.
Classes Venus Prototypes in
Object-Oriented Languages.
In Fall Joint Computer Conference.
ACMI/IEEE, Dallas, Texas,
November, 1986.

[Goldberg, Robson 83]

Adele Goldberg and David Robson.

SmallTalk-80: The Language and
its Implementation.

Addison-Wesley, Reading, MA,
1983.

Carl Hewitt.

Viewing Control Structures as
Patterns of Passing Messages.

In P. Winston and R. Brown [eds.],
Artificial Intelligence, an MIT
PerspectiveMIT Press,
Cambridge, MA, 1979.

[Hewitt 79]

[Hewitt, Attardi, Lieberman 79]

Carl Hewitt, Giuseppe Attardi, and

Henry Lieberman.

Security And Modularity In
Message Passing.

In First Conference on Distributed
Computing IEEE, Huntsville,
1979.

[Kahn 79] Kenneth Kahn.
Creation of Computer Animation
from Story Descriptions
Ph.D. thesis, Massachusetts
Institute of Technology, 1979.

[Krasner 84] Glenn Krasner, editor.
SmallTalk-80: Bits of H istory and
Words of Advice.
Addison-Wesley, New York, 1984.

[Lieberman 86a] Henry Lieberman.
Concurrent Object Oriented
Programming in Act 1.
In A. Yonezawa and Tokoro [eds.],
Concurrent Object Oriented
Programming NUT Press,
Cambridge, MA, 1986.

[Lieberman 86b]Henry Lieberman.

Delegation and Inheritance: Two
Mechanisms for Sharing
Knowledge in Object Orieatl
Systems.

In J. Bezivin, P. Cointe [eds.],
3eme Journees d’'Etudes
Languages Orientes Objets
AFCET, Paris, France, 1986.

[Lieberman and Hewitt 83]
Henry Lieberman and Carl Hewitt.
A Real Time Garbage Collector
Based on the Lifetimes of
Objects.
CACM26(6), June, 1983.

[Moon, Weinreb 84]
David Moon, Daniel Weinreb, et al.
Lisp Machine Manual
Symbolics, Inc. and MIT,
Cambridge, MA, 1994,

[Rees 85] Jonathan Rees, et al.
The T Manual
Technical Report, Yale University,
1985.

[Steels 82] Luc Steels.
An Applicative View of Object
Oriented Programming
Technical Report Al Memo 15,
Schlumberger-Doll Research,
March, 1982.

