
Q

GUI Development with Qt

Multi-Platform Graphical

User-Interface Development

with Qt
Prof. Dr. Stefan Röttger, Stefan.Roettger@th-nuernberg.de

What is Multi-Platform GUI Development?
Program Development on Linux, Mac and Windows

Related Topics
→ Consistent Software Management
→ Transparent Software Development
→ Minimization of Platform-Dependencies
→ Abstraction of Native Platforms and Libraries

What is ?
Qt is a platform-independent graphical user interface

Covered Topics:
Multi-Platform Make (CMake)
Multi-Platform Versioning

 Δ

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

1 of 67 19.12.2014 22:46

Binary Version Search
QMake und moc
Main Window and Menus
Qt Event Loop
Basic Qt UI Elements
Signal-Slot Concept
Key end Mouse Events
Widgets and Layouts
Internationalization (i18n)
Consistent Preferences
Drag and Drop
Threads
Inter-Thread Communication
Graphics with QPainter and QGL

Hands-On Project:
Project Info
Project Ideas

Lessons:
Lesson 1: Getting Started

Qt
Licensing
Popularity
Competitors
Why Qt
Practised Platform
Qt Installation
Qt Documentation

Lesson 2: A First Qt Example
Hands-on Qt
QWidget
Widget Size
Compilation with QMake
Compilation with CMake
Debugging
Using SVN

Lesson 3: A Simple Painting Application with QPainter
QPainter
Event Loop
Events
Specializing QWidget
Drag and Drop
Drag and Dropping URLs
A Painter Application

Lesson 4: An OpenGL Application with QGL
QGL
OpenGL
QGL Example

Lesson 5: A Qt Program with a GUI
GUI Concept
Widgets and Layouts
Layout Policies
GUI Elements

QLabel

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

2 of 67 19.12.2014 22:46

QSlider
QCheckbox
QLineEdit
QFileDialog
QSplitter
QTabWidget

GUI Example
Lesson 6: Signals and Slots

Signals and Slots
Signal and Slot Example
MOC
MOC with CMake
MOC CMake Example
QWidget Slots
QMainWindow

Window Title
Menus
Settings

Layout Example
Lesson 7: Threading Concepts

Blocking and Non-Blocking
Threads and Processes
Race Condition
Threads and Mutexes
QThread and QMutex
Scoped Lock
Queued Connections
Producer Consumer Example
Mandelbrot Example

Lesson 8: A Non-Blocking Qt Application
Job Queue
Threaded Image Conversion
KDE4 Integration
KDE4 Drop Icon
KDE4 Examples

Lesson 9: Qt Mobile
Qt Mobile
Qt Mobile Features
Getting Started with Android Qt
Creating a new Android Qt Project
Running an Android Qt App
Android Qt GPS Example
Android Qt on a Samsung Galaxy Ace 2

Lesson 10: Outlook
Further Reading

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

3 of 67 19.12.2014 22:46

1  Project Info
Accompanying the lecture, the learned lessons are excercised in a hands-on
programming project. The aim of the project is to get in depth knowledge of the
following topics:

Version control
Using the CMake build system
Using the Qt moc pre-compiler
Using basic Qt objects and classes
Building a sample application
Employ Qt threading concepts

You define the theme of your project. It can be anything you find interesting, as
long as the above topics are covered, in particular that the project employs Qt’s
threading concept.

Upon successful completion and presention of the project you receive a grade that
serves as course assessment.

A few examples and possible project ideas are listed on the following page…

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

4 of 67 19.12.2014 22:46

2  Project Ideas
The main idea to start a qt project is not to start from scratch. The idea is to
choose a well stablished middle-ware (that is a well known open-source library)
and utilize it by writing a threaded qt user interface for a particular use case.

Here are some project ideas and the corresponding open-source libraries to be
utilized:

Theme Use Case Library

Fractals Mandelbrot set [1] std::complex

Number
crunching

Computing Pi
GMP = Gnu Multiple Precision

Library

Security
Parallelized password

cracking
PCL = Password Cracking

Library

Photo-realism Ray-tracing POV-Ray

Pattern
recognition

Kinect
OpenCV / PCL = Point Cloud

Library

Networking File transfer Open-SSH

Remote Sensing NDVI GDAL / libGrid

…

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

5 of 67 19.12.2014 22:46

3  Lesson 1: Getting Started

3.1  Qt

Qt is an
object-oriented User-interface written in C++
it has dual licensing terms (commercial and open-source)
long tradition (originated at Trolltech in Norway, then Nokia, now Digia)
it is available for

Linux
Ubuntu Debian MINT OpenSuSe RedHat
ARM (Raspberry Pi → Rasbian)

Mac
Windows
Android (via Qt Mobile / MeeGo / Tizen)

News: Qt 5.1 alpha supports iOS and Android [2]
programming paradigm a flavor of the well-known Model-View-Controller
concept
user interface is contructed by grouping widgets

via dragndrop UI builder (Qt Designer)
via creating new C++ objects

base class is QWIdget
new objects with new functionality is created by deriving from
QWidget for example and overriding its members

widgets are organized as a tree, where each widget can have sub-widgets
and so on

3.2  Licensing

Qt is licensed under a commercial and open source license (GNU Lesser General
Public License version 2.1).

Remark: back in time there was only a commercial license for windows, but
nowadays all platforms share the same licensing terms.

Commercial licensing

“The commercial License of Qt is the correct license to use for the
development of proprietary and/or commercial software with Qt where you
need to safeguard your development investment to secure your competitive
advantage.”

Open Source Licensing

“Alternatively Qt is also licensed under under the GNU General Public
License (GPL) (version 3) and the GNU Lesser General Public License
(LGPL) (version 2.1). You can use this edition of Qt to create and distribute
software with licenses that are compatible with these free software licenses.
LGPL and GPL are complex licenses that contain many obligations and
restrictions you must abide with. Always consult an experienced lawyer
before choosing these licenses for your project.”

You can download Qt under an open-source license from http://qt-project.org/

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

6 of 67 19.12.2014 22:46

Extensive documentation is avalaible at http://qt-project.org/doc/qt-4.8/

3.3  Popularity

The dual licensing terms make it a popular UI choice because:
there is a OSS license to start with
later on you can opt for a commercial license with support
documentation is up to date, complete and well written with lots of tutorials
to start with
well-tested ui for broad variety of platforms.

a broad subset of functionality (menus, file-selectors, drag and drop
etc.) is supported transparently via Qt classes on all platforms
abstraction classes for a broad variety of third-party libraries (OpenGL,
MySql, etc.)
Qt has been known to just work and be very productive with a clean
layout of classes and abstractions
extensively tested as basis of the KDE Linux Desktop

3.4  Competitors

Multi-Platform Competitors:

wxWidgets
OSS
not as clean
not as well documented
not nearly as bug-free

GTK+
OSS
base of the Gnome Linux Desktop
no support for windows

Single-Platform Competitors:

Cocoa (MacOS X)
Objective C is odd
Clean and powerful functionality (AppleScript XCode AppleGL)
Direct access to MacOS X functionality (iTunes streaming etc.)
Only on Mac and very special
Almost no standards
some free and open development tools like XCode

Windows Competitors

mfc
outdated

wpf
deprecated

.net
C#

interpreted code
attributes via getters/setters
garbage collection
managed/unmanaged code interface problems

vast number of convenience classes
direct access to Microsoft products like DirectX Excel Word etc.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

7 of 67 19.12.2014 22:46

extremely proprietray
source not available
no standards
alternative: Mono

3.5  Why Qt

Qt is the only
well-designed
well-tested
well-documented
well-portable
open-source

UI currently out there.

3.6  Practised Platform

In the following we are restricting ourselves to to Unix platform to excercise the
Qt lessons. Since Qt is a platform independent UI the qt exmaples will work on
other platforms like Windows and Mac as well, although they might look a bit
different. But we are not giving advice and support for the development
environment those platforms support.

Therefore, it is highly recommended to use Ubuntu (Debian) as development
platform. Other Unix flavors like OpenSuse or MINT will work, too.

You can install Ubuntu on your system by downloading the iso-image installer
from ubuntu.com and burning the iso-image to cd/dvd. Then boot from this
install image. Then follow the instructions of the installer. Installation is reliable
and straight forward and usually requires only a few clicks if you go with the
standard installation options.

It is assumed that you are familiar with object-oriented programming using C++.
If not, please read the C/C++ programming lecture.

To get used to the Unix development platform it is recommended to start reading
the following HowTos:

HowTo Use The Shell
HowTo Use The GCC

3.7  Qt Installation

Prerequisites

Unix software development with Qt requires the installation of the following tools:
cmake
gnu/c++ compiler
svn
qt/qmake
[OpenGL]

Installation of GCC and SVN

The GCC (Gnu Compiler Collection including the gcc and g++ compilers) is

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

8 of 67 19.12.2014 22:46

usually already installed with Ubuntu (and Mac). To test it, open the unix terminal
and type “gcc —version”. On my Mac this gives the following output:

i686-apple-darwin9-gcc-4.0.1 (GCC) 4.0.1 (Apple Inc. build 5465)
Copyright (C) 2005 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

To test svn, we tell it to give us some help about the available subversion
commands:

 svn help

A list of most common svn subcommands:

 add
 checkout (co)
 commit (ci)
 copy (cp)
 delete (del, remove, rm)
 diff (di)
 log
 revert
 status (stat, st)
 update (up)

Also see the SVN HowTo [3] to learn more about Subversion/SVN.

Installation of CMake

Open the Ubuntu software manager, search for the package “cmake” and select it
and all its dependencies for installation. Then click the install button.

Installation of OpenGL

The installation of OpenGL (and GLUT) is vendor specific: On MacOS X it is
already installed with the XCode development package, on Linux it comes with the
“mesa-dev”, “X11-dev” and “free-glut3-dev” development packages whereas on
Windows it is usually installed with the MSVC IDE.

Installation of Qt4

On MacOS X and Windows, it is recommended to build and install Qt from source!

On Linux, it is mostly sufficient to install a recent Qt binary package using the
Ubuntu software manager, for example. The list of available Ubuntu packages is
available online [4].

On the command line installation is even simpler:

 sudo apt-get install qt4-dev-tools

Installation of Qt4 from Source

If you install Qt from source, for example on a Mac or when there is no binary
package available, we grab the source tar ball from:

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

9 of 67 19.12.2014 22:46

ftp://ftp.qt.nokia.com/qt/source/qt-everywhere-opensource-src-4.7.4.tar.gz

Create a working directory for your software projects (e.g. ~/qt-projects) and put
the Qt source tar ball (.tar.gz. .tgz) there.

Then use the Terminal (unix shell) to navigate (change directory) to the working
directory:

 cd ~/qt-projects

Extract the Qt source tarball:

 tar zxvf qt-everywhere-opensource-src-4.7.4.tar.gz

Navigate into the extracted source

 cd qt-everywhere-opensource-src-4.7.4

Then type on the unix console:

 ./configure -opensource && make

After the build process has finished (go get yourself a cup of coffee) you need to
install the compiled binaries and libraries on the Unix system via the following
unix command:

 sudo make install

You will be asked to enter your root password for installation of Qt. The binaries
will usually be installed in /usr/local/Trolltech/… or /usr/local/Qt… depending on
your system configuration.

Now we are ready to get our hands on the first Qt example.

3.8  Qt Documentation

Qt Class Reference [5]
Examples and Tutorials [6]
Books [7]

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

10 of 67 19.12.2014 22:46

4  Lesson 2: A First Qt Example

4.1  Hands-on Qt

Our first Qt example will be to simply create an application that will open a plain
window, that is a plain widget (without any functionality yet).

First we run an application by returning execution control to its event loop:

#include <QtGui/QApplication>
#include <QtGui/QWidget>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 QWidget main;
 main.show();

 return(app.exec());
}

4.2  QWidget

Next we create a custom widget with a red background, by deriving from QWidget
and telling its constructor to set a color palette with a single red color for the
background.

class MyQWidget: public QWidget
{
public:

 //! default ctor
 MyQWidget(QWidget *parent = 0)
 : QWidget(parent)
 {
 QColor background="red";
 setPalette(background);
 }

 //! dtor
 ~MyQWidget()
 {}

};

Widgets can contain sub-widgets and so on. Therefore, the collection of all
widgets is organized as a tree (or acyclic graph) with references to the parent
widgets for each child.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

11 of 67 19.12.2014 22:46

4.3  Widget Size

Widget size is not set directly because there is not one size of one widget on all
platforms and for all screen resolutions.

Instead, we can provide methods that return the preferred, minimum and
maximum sizes. Those methods are questioned by the parent widget when
choosing an appropriate layout for the widget for a particular available container
size.

//! return preferred minimum window size
QSize minimumSizeHint() const
{
 return(QSize(100, 100));
}

//! return preferred window size
QSize sizeHint() const
{
 return(QSize(512, 512));
}

4.4  Compilation with QMake

Supposed we have a single cpp module named “main.cpp” that contains our Qt
exmaple, we compile it using the QMake platform independent build system with
the following QMake project description file:

TARGET = main
TEMPLATE = app

QT += core gui

SOURCES += main.cpp

QMake takes the project description file (e.g. “main.pro”) and transforms it into a
project representation that is suitable for the respective platform:

On Unix it will produce a “Makefile” to be compiled with “make” on the
command line.
On Mac it will produce a XCode project description (.xcode)to be opened
with XCode IDE.
On Windows it will produce a MSCV project solution (.sln) to be opened with
the M𝑉𝑖𝑠𝑢𝑎𝑙𝐶 + + 𝐼𝐷𝐸 .

On Unix we type the following command to compile:

 qmake && make

On Mac we type the following command to compile:

 qmake -spec macx-g++ && make

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

12 of 67 19.12.2014 22:46

4.5  Compilation with CMake

QMake is simple to start with, but offers little control over the build configuration
and installation paths. In this respect the multi-platform build tool CMake is
superior.

To compile our Qt examples with CMake we create a meta project description
named “CMakeLists.txt”. This project description is transformed into Makefiles,
XCode projects or Windows solutions similar to QMake.

cmake build file

PROJECT(MyQtApp)

CMAKE_MINIMUM_REQUIRED(VERSION 2.8.3)

non-standard path to Qt4
SET(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH};
 /usr/local/Trolltech/Qt-4.7.4;
)

Qt4 dependency
FIND_PACKAGE(Qt4 COMPONENTS QtCore QtGui REQUIRED)
INCLUDE(${QT_USE_FILE})
ADD_DEFINITIONS(${QT_DEFINITIONS})

executable
ADD_EXECUTABLE(main main.cpp)
TARGET_LINK_LIBRARIES(main
 ${QT_LIBRARIES}
)

On Unix and Mac we type the following command to compile:

 cmake . && make

To change the configuration (e.g. paths, compiler settings etc.) we type

 ccmake .

to open the interactive cmake configuration tool.

Note: On Windows those tools are integrated into the CMake GUI application.

4.6  Debugging

With a QMake project we can use the QtCreater IDE to manage the projects, edit
the source code and UI or add break points.

With CMake we have 2 options to debug Qt code:
Import the CMake list into the KDevelop IDE and set break points there.
Configure the CMake project manually to create debug code instead of
release code and use the GNU command line debugger to debug it:

cmake -DCMAKE_BUILD_TYPE=Debug .
make
gdb myqtapp

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

13 of 67 19.12.2014 22:46

Alternatively, we can use the ccmake curses configuration tool to set the
CMAKE_BUILD_TYPE or other compiler flags manually:

ccmake .
make
gdb myqtapp

On the gdb command line we can set break points:

break main

and run the program until the break point is hit:

run

or list the call stack (e.g. after a crash):

where

or print variables:

p var

or simply step over the next line of code:

n

or simply step into the next command or function:

s

4.7  Using SVN

The shown Qt examples are available for checkout in a Subversion repository on
the following SVN server:

svn://schorsch.efi.fh-nuernberg.de

There is also a web front end [8] for browsing the repository at:

schorsch.efi.fh-nuernberg.de

To check out the first Qt example we use subversion from the command line:

svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-01

Then compile with CMake and execute:

cd example-01
cmake . && make && ./main

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

14 of 67 19.12.2014 22:46

5  Lesson 3: A Simple Painting
Application with QPainter

5.1  QPainter

QPainter is an imperative style drawing backend.

QPainter Class Reference [9]

Method excerpt:
drawEllipse, drawLine, drawPoint, drawPolygon, drawPolyLine, drawRect
(fillRect)
drawPixmap, drawImage, drawPicture
drawText

setFont
setWorldTransform - see also Qt Coordinate Systems [10]

rotate, scale, translate
setOpacity(float), setPen(QColor), setBrush(QBrush)

setCompositionMode

Geometric vector and attribute specificiations are done via QPoint, QLine, QRect
and QColor classes. Some examples:

QPoint(10,10) QPointF(1.5,9.5)
QRect(0,0,width()-1,height()-1)
QColor(r,g,b,a) QColor("red")

The QPixmap class is an off-screen image representation that can be used as a
paint device.

QPixmap pix(100,100);
QPainter p(&pix);
p.drawEllipse(50,50,10,10);

The QImage class is an image representation with pixel (QColor) accessors for
and IO access. It can dierctly load JPEG or PNG image files (and a few more
picture formats).

QImage img;
img.load("image.png");

A QPicture is a recording of QPainter drawing commands. When drawing a
QPicture the recorded QPainter commands are replayed. A QPicture is device
independent, serializable and storage-efficient.

// record
QPicture pic(100,100);
QPainter p;

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

15 of 67 19.12.2014 22:46

p.begin(&pic);
p.drawEllipse(50,50,10,10);
p.end();

// replay
p.begin(&img);
p.drawPicture(0,0,picture);
p.end();

As opposed to QPainter’s imperative style, Qt 5.0 supports a retained mode style
with the introduction of the Qt Scene Graph for descriptive definition of
drawings. It is utilizing OpenGL ES on the backend side.

5.2  Event Loop

Qt applications are event driven.

This means that we do not act imperatively, but we react on events being
delivered.

For this purpose the first action of each Qt application is to return program
control to the so called event loop. The event loop gathers events of various kinds
and dispatches them to the event handlers of those objects that they belong to.

Each Qt object that is a subclass of QObject has an event handler named
QObject::event() that receives events of QEvent type.

The event() method does not handle the events itself. Based on the type of event
delivered, it calls a specific event handler for that specific type of event, and
notifies the caller whether the event was accepted or ignored.

The normal way for an event to be handled is by calling a virtual function. For
example, QPaintEvent is handled by calling QWidget::paintEvent(). This virtual
function is responsible for reacting appropriately, normally by repainting the
widget. If you do not perform all the necessary work in your implementation of the
virtual function, you may need to call the base class’s implementation.

For example, the following code handles left mouse button clicks on a custom
subclassed QCheckBox widget while passing all other button clicks to the base
class:

void MyCheckBox::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == Qt::LeftButton)
 // handle left mouse button here
 else
 // pass on other buttons to base class
 QCheckBox::mousePressEvent(event);
}

5.3  Events

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

16 of 67 19.12.2014 22:46

Some events, such as mouse and key event, come from the window system; some,
such as timer event, come from other sources; some come from the application
itself.

Basic Event Types

paint event (QPaintEvent → QObject::paintEvent())
resize event (QResizeEvent → QObject::resizeEvent())
mouse event (QMouseEvent → QObject::mouseEvent())
key event (QKeyEvent → QObject::keyEvent())
wheel events (QWheelEvent → QObject::wheelEvent())
timer event (QTimerEvent → QObject::timerEvent())

Each event subclasses QEvent and adds event-specific functions. For example,
QResizeEvent adds size() and oldSize() to enable widgets to discover how their
dimensions have been changed.

Timer Events

Timer events can be created on any QObject simply by calling its startTimer(ms)
method with the number of milliseconds after which the timer event is scheduled
to be repeated.

The startTimer() method returns a timer id which can be passed to stopTimer() to
stop the timer from firing repeatedly.

Event Filters

Sometimes an object needs to look at, and possibly intercept, the events that are
delivered to another object. For example, dialogs commonly want to filter key
presses for some widgets.

The QObject::installEventFilter() function enables this by setting up an event
filter, causing a nominated QObject filter object to receive the events for a target
object in its eventFilter() function. This filter functions gets to see the events
before the target object processes them. If the inspected event should not be
processd further, because it is handled by the target, the event filter function
returns true.

Sending Events

Many applications require to send their own events. Custom events are created by
subclassing from QEvent. Sending those events can be done in exactly the same
way as the Qt main event loop sends events.

Events can be sent either immediately via QCoreApplication::sendEvent() or
stored in a queue for later execution via QCoreApplication::postEvent().

Sending customized events may require a modification of the event handler to
check and dispatch the cutom event type.

Events and Threads

Qt methods that modify UI elements need to be called from the same thread as
the Qt main event loop. It can’t be done from another thread.

Calling methods on objects in another thread can be achieved by sending custom
events to the thread of the target object. Sending events is thread-safe. Events
can be sent to all threads that have an event loop running.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

17 of 67 19.12.2014 22:46

QObject is not thread-safe though. If you call a QObject method from multiple
threads you have to put a mutex around the code that accesses shared data.

Another solution is to use Queued Connections to call methods in other threads.

5.4  Specializing QWidget

In the following we look at a Qt example application that handles paint events to
paint a text on the main widget.

First we specialize QWidget by overriding its paintEvent() method.

class MyQPainterWidget: public QWidget
{
public:

 //! default ctor
 MyQPainterWidget(QWidget *parent = 0)
 : QWidget(parent)
 {}

 //! dtor
 ~MyQPainterWidget()
 {}

protected:

 //! reimplemented paint event
 void paintEvent(QPaintEvent *)
 {
 // paint events handled here
 }

};

Then we reimplement the paintEvent() method by drawing a centered text on the
widget’s canvas by using the QPainter class:

#include <QPainter>

//! reimplemented paint event
void paintEvent(QPaintEvent *)
{
 QPainter painter(this);

 painter.setPen(Qt::green);
 painter.setFont(QFont("Arial", 100));
 painter.drawText(rect(), Qt::AlignCenter, "Qt");
}

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

18 of 67 19.12.2014 22:46

Access the example via WebSVN:
QPainter Example [11]

Checkout the Qt example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-02

5.5  Drag and Drop

Qt’s Drag and Drop concept is also realized with events.

There are events for a dragged item
entering a widgets area
moving in a widgets area
leaving a widgets area
dropped within a widgets area

There are according virtual methods that are dispatched when the above events
are delivered:

protected:
 void dragEnterEvent(QDragEnterEvent *event);
 void dragMoveEvent(QDragMoveEvent *event);
 void dragLeaveEvent(QDragLeaveEvent *event);

public:
 void dropEvent(QDropEvent *event);

For that to work, we need to enable drag and drop support in the widget’s
constructor:

setAcceptDrops(true);

In case a widget wants to accept a particular item of a specific type being dragged
into its area we need to notify this in the respective event handler:

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

19 of 67 19.12.2014 22:46

void ViewerWindow::dragEnterEvent(QDragEnterEvent *event)
{
 event->acceptProposedAction();
}

The same applies for the move and drop events.

5.6  Drag and Dropping URLs

(:Drag and Dropping URLs:)

If we want to accept only a specific type of items, for example URLs resp. files
being dropped into the widget, we check the item type in the drop event and
accept the drop if it matches:

void ViewerWindow::dropEvent(QDropEvent *event)
{
 const QMimeData *mimeData = event->mimeData();

 if (mimeData->hasUrls())
 {
 event->acceptProposedAction();

 QList<QUrl> urlList = mimeData->urls();

 for (int i=0; i<urlList.size(); i++)
 {
 QUrl qurl = urlList.at(i);

 // run appropriate action for each dropped url here
 }
 }
}

5.7  A Painter Application

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

20 of 67 19.12.2014 22:46

#include <iostream>

#include "painter.h"

const double MyQPainterWidget::fps=30.0; // animated frames per
second

MyQPainterWidget::MyQPainterWidget(QWidget *parent)
 : QWidget(parent)
{
 // init background
 pix=NULL;

 // init brush parameters
 brushSize=50;
 mousePos=QPoint(-brushSize,-brushSize);

 // accept drag and drop
 setAcceptDrops(true);

 // start timer for periodic repainting
 startTimer((int)(1000.0/fps)); // ms=1000/fps
}

MyQPainterWidget::~MyQPainterWidget()
{
 if (pix!=NULL)
 delete pix;
}

QSize MyQPainterWidget::minimumSizeHint() const
{
 return(QSize(100, 100));
}

QSize MyQPainterWidget::sizeHint() const
{
 return(QSize(512, 512));
}

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

21 of 67 19.12.2014 22:46

void MyQPainterWidget::setBackground(QPixmap *p)
 {
 if (pix!=NULL)
 delete pix;

 pix=p;

*pix=pix->scaled(size(),Qt::IgnoreAspectRatio,Qt::SmoothTransformation);

 repaint();
 }

void MyQPainterWidget::paint(QPoint pos, int size, QColor color,
double opacity)
{
 QPainter painter(pix);

 painter.setRenderHint(QPainter::Antialiasing);

// paint into background pixmap
 painter.setPen(QColor(0,0,0,0)); // border color
 painter.setBrush(color); // fill color
 painter.setOpacity(opacity); // filling opacity
 painter.drawEllipse(pos, size, size);
}

void MyQPainterWidget::brush()
{
 if (buttonDown)
 {
 paint(mousePos, brushSize, QColor(255,0,0), 0.25);
 repaint();
 }
}

void MyQPainterWidget::paintEvent(QPaintEvent *)
{
 // create paintable pixmap as window background
 if (pix==NULL)
 {
 pix=new QPixmap(size());
 pix->fill(Qt::white);
 }

 // draw painted pixmap as background
 QPainter painter(this);
 painter.drawPixmap(rect(), *pix, pix->rect());

 // draw brush proxy as foreground
 painter.setOpacity(0.25); // drawing opacity
 painter.setPen(QColor(0,0,0)); // border color
 painter.setBrush(QColor(0,0,0)); // fill color
 painter.drawEllipse(mousePos, brushSize, brushSize);
}

void MyQPainterWidget::resizeEvent(QResizeEvent *event)

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

22 of 67 19.12.2014 22:46

{
 if (pix!=NULL)
 setBackground(new QPixmap(*pix));
}

void MyQPainterWidget::mousePressEvent(QMouseEvent *event)
{
 mousePos = event->pos();

 if (event->buttons() & Qt::LeftButton)
 buttonDown = true;
 else
 event->ignore(); // propagate to parent

 brush();
}

void MyQPainterWidget::mouseReleaseEvent(QMouseEvent *event)
{
 buttonDown = false;
}

void MyQPainterWidget::mouseMoveEvent(QMouseEvent *event)
{
 mousePos = event->pos();

 brush();
}

void MyQPainterWidget::mouseDoubleClickEvent(QMouseEvent
*event)
{
 mousePressEvent(event);
 buttonDown = false;
}

void MyQPainterWidget::keyPressEvent(QKeyEvent *event)
{
 if (event->key() == Qt::Key_Greater)
 brushSize+=10;
 else if (event->key() == Qt::Key_Less)
 if (brushSize>10) brushSize-=10;

 brush();
}

void MyQPainterWidget::keyReleaseEvent(QKeyEvent *event)
{
 event->ignore(); // propagate to parent
}

void MyQPainterWidget::wheelEvent(QWheelEvent *event)
{
 event->accept(); // do not propagate to parent
}

void MyQPainterWidget::timerEvent(QTimerEvent *event)
{

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

23 of 67 19.12.2014 22:46

 mousePos = mapFromGlobal(QCursor::pos());

 repaint();
}

void MyQPainterWidget::dragEnterEvent(QDragEnterEvent *event)
{
 event->acceptProposedAction();
}

void MyQPainterWidget::dragMoveEvent(QDragMoveEvent *event)
{
 event->acceptProposedAction();
}

void MyQPainterWidget::dropEvent(QDropEvent *event)
{
 const QMimeData *mimeData = event->mimeData();

 if (mimeData->hasUrls())
 {
 event->acceptProposedAction();

 QList<QUrl> urlList = mimeData->urls();

 QUrl qurl = urlList.at(0);
 QString url = qurl.toString();

 QImage img;

 if (url.startsWith("file://"))
 url=url.remove("file://");

 if (img.load(url))
 {
 QPixmap pixmap;
 pixmap.convertFromImage(img);
 setBackground(new QPixmap(pixmap));
 }
 }
}

void MyQPainterWidget::dragLeaveEvent(QDragLeaveEvent *event)
{
 event->accept();
}

Access the example via WebSVN:
Painter Example [12]

Checkout the Qt example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-06

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

24 of 67 19.12.2014 22:46

6  Lesson 4: An OpenGL Application
with QGL

6.1  QGL

QGL is a Qt wrapper for the OpenGL API.

OpenGL is a API for rendering 3D virtual scenes. It utilizes the graphics hardware
of a particular platform for high performance rendering. On mobile devices a
subset of OpenGL is utilized: OpenGL ES (OpenGL for Embedded Systems).

The main use case for OpenGL in a Qt application is the have a OpenGL rendering
context as the 3D rendering area. The QGLWidget class establishes such a context
attached to the widget canvas.

So a QGLWidget is a 3D rendering window.

First, we need to check if OpenGL and a proper grafics adaptor is avalable on our
platform, so that we can use QGLWidget. Otherwise the application will likely
crash.

#include <QtOpenGL/qgl.h>

if (!QGLFormat::hasOpenGL())
{
 QMessageBox::warning(0, "NO OPENGL",
 "Open GL is not available. Program abort.",
 QMessageBox::Ok);

 exit(1);
}

Note: If OpenGL is available, it is also utilized as the rendering backend of
QPainter.

6.2  OpenGL

Die Computergrafik-Pipeline (Rendering
Pipeline)

Die Grafikpipeline
Aufgaben der Grafikpipeline
Modellierung von Objekten
Pipeline Begriffe
Modellierung der Oberflächen
Stufen der Pipeline
Vertex Transformationen
Beleuchtung
Rasterisierung

Fixed Function Pipeline
Programmable Pipeline 1

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

25 of 67 19.12.2014 22:46

Programmable Pipeline 2
Programmable Pipeline 3

Konkret: Die Game-Engine von AquaNox

3D Darstellung
Matrix Transformationen
Lokale Koordinaten
Viewkoordinaten

Viewmatrix
View Dreibein

View Frustum
View Kamera

Augenkoordinaten
Projektionsmatrix

MVP Matrix
Viewport Matrix
Z-Puffer

Normalisierte Projektion
Nichtlineare Z-Abbildung
Z-Buffer Fighting

Frustum Clipping
Line Clipping

Normalen

Die OpenGL Pipeline
GL Vertices

GL Manpages
GL Attribute

GL Primitive
GL Primitiv Beispiel

GL Matrizen
GL Matrix Mode
GL Matrix Manipulation
GL Perspektive
GL Transformationen
GL Transformations Beispiel

GL Kamera
GL Matrix Stack

GL Objekt Hierachie
GL Matrix Stack Beispiel

GL Triangle Strips
Batching
GL Vertex Array
GL Indexed Face Sets

GL Backface Culling
GL Backface Test
GL Backface Beispiel

GL Clip Planes
GL Fogging
GL Tesselierung

GL Tesselierungsbeispiel
GL PolygonMode

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

26 of 67 19.12.2014 22:46

6.3  QGL Example

Instead of overriding paintEvent(), we derive from QGLWidget and override
paintGL() and place OpenGL calls in it.

We also override initializeGL() and resizeGL() as shown in the following example:

#include <QtGui/QApplication>
#include <QtGui/QWidget>

#include <QtOpenGL/qgl.h>

#include <GL/gl.h>
#include <GL/glu.h>

static const double fps=30.0; // animated frames per second

class MyQGLWidget: public QGLWidget
{
public:

 //! default ctor
 MyQGLWidget(QWidget *parent = 0)
 : QGLWidget(parent)
 {
 setFormat(QGLFormat(QGL::DoubleBuffer | QGL::DepthBuffer |
QGL::StencilBuffer));

 startTimer((int)(1000.0/fps)); // ms=1000/fps
 }

 //! dtor
 ~MyQGLWidget()
 {}

 //! return preferred minimum window size
 QSize minimumSizeHint() const
 {
 return(QSize(100, 100));

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

27 of 67 19.12.2014 22:46

 }

 //! return preferred window size
 QSize sizeHint() const
 {
 return(QSize(512, 512));
 }

protected:

 void initializeGL()
 {
 qglClearColor(Qt::black);
 glEnable(GL_DEPTH_TEST);
 glDisable(GL_CULL_FACE);
 }

 void resizeGL(int, int)
 {
 glViewport(0, 0, width(), height());
 }

 void paintGL()
 {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // ... opengl rendering commands go here ...

 // setup perspective matrix
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(90.0,1.0,0.1,10.0);

 // setup modelview matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 // define local rotated coordinate system
 static double angle=0.0; // rotation angle in degrees
 static const double omega=180.0; // rotation speed in degrees/s
 glTranslated(0.0,0.0,-2.0);
 glRotated(angle,0.0,1.0,0.0);

 // render green triangle
 glBegin(GL_TRIANGLES);
 glColor3f(0.0f,0.75f,0.0f);
 glVertex3d(-0.5,-0.5,0.0);
 glVertex3d(0.5,-0.5,0.0);
 glVertex3d(0.0,0.5,0.0);
 glColor3f(1.0f,0.75f,1.0f);
 glVertex3d(0.0,-0.5,-0.5);
 glVertex3d(0.0,-0.5,0.5);
 glVertex3d(0.0,0.5,0.0);
 glEnd();

 // angle delta equals time delta times omega
 double dt=1.0/fps;
 angle+=dt*omega;

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

28 of 67 19.12.2014 22:46

 }

 void timerEvent(QTimerEvent *)
 {
 repaint();
 }

};

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 if (!QGLFormat::hasOpenGL()) return(1);

 MyQGLWidget main;
 main.show();

 return(app.exec());
}

Access the example via WebSVN:
QGL Example [13]

Checkout the Qt example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-03

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

29 of 67 19.12.2014 22:46

7  Lesson 5: A Qt Program with a GUI

7.1  GUI Concept

The GUI consists of a set of building blocks, the so called widgets, which are
constructed from sub-widgets ans so on, thus forming a tree.

All widgets are derived from QWidget which is derived from the base class of
everything QObject. A widget can either be a readily available basic widget type
or a custom type that is derived from basic types via subclassing.

Each widget can contain a collection of sub-widgets by means of a so called layout
(QLayout).

7.2  Widgets and Layouts

For a widget to contain children the widget needs to own a so called layout
(QLayout).

The layout contains a list of widget children that are owned by the layout. The
layout also has settings and policies how how to layout the owned widgets within
the available canvas size, such as the expanding direction and spacing.

Simple Example:

QWidget
|
QLayout
| \
QWidget QWidget

QWidget w;

QLayout *l=new QLayout;
l->setExpandingDirection(Qt:horizontal);
l->setSpacing(100);

l->addWidget(new QWidget);
l->addWidget(new QWidget);

w.setLayout(l);

w.show();

Additional helpful layout methods:
l→itemAt(index) returns the indexed widget from the layout’s widget list
l→getGeometry() l→setGeometry()

7.3  Layout Policies

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

30 of 67 19.12.2014 22:46

The particular graphical appearance of a layout is defined by the size policies of
the owned widgets, unless the policy of the layout does not specify a different
behavior.

Each widget has a horizontal/vertical layout policy (QSizePolicy): The default
policy is Preferred/Preferred, which means that the widget can be freely resized,
but prefers to be the size sizeHint() returns. Button-like widgets set the size policy
to specify that they may stretch horizontally, but are fixed vertically. Additional
policies are:

expanding direction: vertical or horizontal or both
item alignment : left, right, centered
spacing between items
stretch: how big a item can grow relative to others to accomodate the
canvans size
margins : border size around each item
etc.

Predefined QHBoxLayout and QVBoxLayout for linear alignment:
QHBoxLayout organizes the contained items horizontally beneath each
other.
QVBoxLayout organizes the contained items vertically below each other.

Additional control via special items added to a layout:
l→addSpacerItem()

add fixed space between two items
l→addStretch(int stretch)

add growable space between two items to accomodate to the available
canvas size

Widgets are normally created without any stretch factor set. When they are laid
out in a layout the widgets are given a share of space in accordance with their
QWidget::sizePolicy() or their minimum size hint whichever is the greater. Stretch
factors are used to change how much space widgets are given in proportion to one
another.

7.4  GUI Elements

QLabel
QCheckBox
QRadioButton
QPushButton
QSlider
QLineEdit
QTabWidget
QSplitter
QMessageBox
QFileDialog

7.4.1  QLabel

QLabel *label = new QLabel(this);
label->setText("text");

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

31 of 67 19.12.2014 22:46

7.4.2  QSlider

QSlider *createSlider(int minimum, int maximum, int value)
{
 QSlider *slider = new QSlider(Qt::Horizontal);
 slider->setRange(minimum * 16, maximum * 16);
 slider->setSingleStep(16);
 slider->setPageStep((maximum - minimum) / 10 * 16);
 slider->setTickInterval((maximum - minimum) / 10 * 16);
 slider->setTickPosition(QSlider::TicksBelow);
 slider->setValue(value * 16);
 return(slider);
}

QSlider *slider = createSlider(0, 100, value);
connect(slider, SIGNAL(valueChanged(int)), this, SLOT(slide(int)));

7.4.3  QCheckbox

QVBoxLayout *layout = new QVBoxLayout;

check1 = new QCheckBox(tr("Check 1"));
check2 = new QCheckBox(tr("Check 2"));

connect(check1, SIGNAL(stateChanged(int)), this,
SLOT(changed1(int)));
connect(check2, SIGNAL(stateChanged(int)), this,
SLOT(changed2(int)));

layout->addWidget(check1);
layout->addWidget(check2);

setLayout(layout);

7.4.4  QLineEdit

QGroupBox *MyQMainWindow::createEdit(QString name, QString
value,
 QLineEdit **lineEdit)
{
 QGroupBox *lineEditGroup = new QGroupBox(name);
 QVBoxLayout *lineEditLayout = new QVBoxLayout;
 lineEditGroup->setLayout(lineEditLayout);
 *lineEdit = new QLineEdit(value);
 lineEditLayout->addWidget(*lineEdit);
 return(lineEditGroup);
}

QGroupBox *lineEditGroup = createEdit(tr("Line Edit"), text,
&lineEdit);

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

32 of 67 19.12.2014 22:46

connect(lineEdit,SIGNAL(textChanged(QString)),this,SLOT(changed1(QString)));

7.4.5  QFileDialog

QStringList browse(QString title,
 QString path,
 bool newfile)
{
 QFileDialog* fd = new QFileDialog(this, title);
 if (fd == NULL) MEMERROR();

 if (!newfile) fd->setFileMode(QFileDialog::ExistingFiles);
 else fd->setFileMode(QFileDialog::AnyFile);
 fd->setViewMode(QFileDialog::List);
 if (newfile) fd->setAcceptMode(QFileDialog::AcceptSave);
 fd->setFilter("All Files (*.*);;Images (*.tif *.tiff *.jpg *.png)");

 if (path!="") fd->setDirectory(path);

 QStringList files;

 if (fd->exec() == QDialog::Accepted)
 for (int i=0; i<fd->selectedFiles().size(); i++)
 {
 QString fileName = fd->selectedFiles().at(i);

 if (!fileName.isNull())
 files += fileName;
 }

 delete fd;

 return(files);
}

7.4.6  QSplitter

Same as a QHBoxLayout (or QVBoxLayout).

Additionally has handles to resize the area of each widget.

7.4.7  QTabWidget

Same as QHBoxLayout (or QVBoxLayout).

Does not show all contained widgets beneath one another, but shows one selected
widget from a tab bar.

7.5  GUI Example

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

33 of 67 19.12.2014 22:46

Access the example via WebSVN:
GUI Example [14]

Checkout the Qt example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-04

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

34 of 67 19.12.2014 22:46

8  Lesson 6: Signals and Slots

8.1  Signals and Slots

Qt follows the concept of “reaction to action”.

More precisely, this means that observed or initiated actions trigger a signal that
causes a given set of signal receivers, the so called slots, to react.

This signal/slot pattern is the usual way of communication between qt objects
(usually widgets).

Note: Qt signals are thread-safe.

8.2  Signal and Slot Example

Pattern:
Method of class A emits signal.
A method of another class B is registered as a receiver for the particular
signal.
The latter method is said to be a slot that is connected to the signal emitter.
Then triggering the signal in class A causes the receiver to invoke the
corresponding slot in class B.

Setting up a signal/slot connection:

Step 1: Creating a signal emitter

class A : public QObject
{
 Q_OBJECT;

public:

 void method()
 {
 emit signal();
 }

signals:

 void signal();

};

Step 2: Creating a receiver slot

class B : public QObject
{
public slots:

 void slot();

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

35 of 67 19.12.2014 22:46

};

Step 3: Connecting the signal emitter with the signal receiver

A *a = new A;
B *b = new B;

connect(a, SIGNAL(signal()), b, SLOT(slot()));

8.3  MOC

The MOC (meta object compiler) generates code that places a MetaCallObject in
each class through which a signal is routed from the originating class to the
receiving class.

Connection of signals and slots is done at run-time.
Multiple slots can be connected to a single signal.

C++ Extensions understood and parsed by MOC:
Connection is implemented via keywords “connect”, SIGNAL, SLOT
Classes with MetaCallObjects are identified via keyword “Q_OBJECT”
Slots are identified via “slots” keyword
Signals are identified via “signals” keyword

8.4  MOC with CMake

Preliminarties:

Any class that emits or receives a signal needs to contain a MetaCallObject by
placing the Q_OBJECT keyword as the first token of the class definition.

Then the MOC parser will inject a MetaCallObject into the class definition.

MOC is not a master-piece of software-engineering:
Q_OBJECT class definitions cannot be header-only.
Multiple class definitions in one header are not allowed.

CMake has a convenience helper to filter headers thorugh MOC:

QT4_WRAP_CPP(OUTFILES *.h)

method()

Class 1

MetaCallObject

MOC generates code
that connects signal and slot

at run-time

emit
signal

method()

Class 2

MetaCallObject

activate
slot

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

36 of 67 19.12.2014 22:46

The output files need to be treated as additional modules.

8.5  MOC CMake Example

Example CMakeLists.txt for MOC integration:

cmake build file

PROJECT(MyQtApp)

CMAKE_MINIMUM_REQUIRED(VERSION 2.8.3)

non-standard path to Qt4
SET(CMAKE_PREFIX_PATH ${CMAKE_PREFIX_PATH};
 /usr/local/Trolltech/Qt-4.7.4;
)

Qt4 dependency
FIND_PACKAGE(Qt4 COMPONENTS QtCore QtGui REQUIRED)
INCLUDE(${QT_USE_FILE})
ADD_DEFINITIONS(${QT_DEFINITIONS})

header list
SET(LIB_HDRS
 module.h
)

module list
SET(LIB_SRCS
 module.cpp
)

moc
QT4_WRAP_CPP(MOC_OUTFILES ${LIB_HDRS})

library
SET(LIB_NAME ${PROJECT_NAME})
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
ADD_LIBRARY(${LIB_NAME} ${LIB_SRCS} ${LIB_HDRS} ${MOC_OUTFILES})

executable
ADD_EXECUTABLE(main main.cpp)
TARGET_LINK_LIBRARIES(main
 ${LIB_NAME}
 ${QT_LIBRARIES}
)

8.6  QWidget Slots

Each class derived from QWidget has the following signals:

void destroyed (QObject * obj = 0)
void customContextMenuRequested (const QPoint & pos)

E.g. signals of QCheckBox [15]:

void stateChanged (int state)
4 signals inherited from QAbstractButton (clicked pressed released toggled)
1 signal inherited from QWidget (customContextMenuRequested)
1 signal inherited from QObject (destroyed)

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

37 of 67 19.12.2014 22:46

8.7  QMainWindow

QMainWindow is a widget with a predefined layout, that features a menu bar and
other convenience classes.

Since it already has a layout, usage is slightly different from regular windows,
menaing that we set the widget’s children not by adding a layout (setLayout) but
by adding a central widget that consumes the work area of the main window
(setCentralWidget).

With a QMainwindow we can easily
create menu entries and actions
load and save persistent program settings
set the main window title

8.7.1  Window Title

MyQMainWindow::MyQMainWindow(QWidget *parent)
 : QMainWindow(parent)
{
 initSettings();

 createMenus();
 createWidgets();

 setWindowTitle(tr("Qt Main Window Example"));
}

8.7.2  Menus

Adding menu entries to a QMainWindow for the entries “Quit” and “About”:

QAction *quitAction = new QAction(tr("Q&uit"), this);
quitAction->setShortcuts(QKeySequence::Quit);
quitAction->setStatusTip(tr("Quit the application"));
connect(quitAction, SIGNAL(triggered()), this, SLOT(close()));

QMenu *fileMenu = menuBar()->addMenu(tr("&File"));
fileMenu->addAction(quitAction);

QAction *aboutAction = new QAction(tr("&About"), this);
aboutAction->setShortcut(tr("Ctrl+A"));
aboutAction->setStatusTip(tr("About this program"));
connect(aboutAction, SIGNAL(triggered()), this, SLOT(about()));

QMenu *helpMenu = menuBar()->addMenu(tr("&Help"));
helpMenu->addAction(aboutAction);

Selection of the Quit item of the file menu invokes the close() slot.

Selection of the About item of the help menu invokes the about() slot:

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

38 of 67 19.12.2014 22:46

private slots:

void about()
{
 QMessageBox::about(this, tr("About this program"),
 tr("just an example"));
}

8.7.3  Settings

The persistent settings of an application are accessed with a QSettings object with
a unique organization and application name:

QSettings settings("www.th-nuernberg.de", "MyApp");

Making a user-defined application property persistent, means setting a particular
value for a unique property identifier on program exit:

QString value="setting";
settings.setValue("id", value);

There are overloaded setters for most basic Qt data types like int, double and
QString.

The persistent values are retrieved at program start with:

if (settings.contains("id"))
 value = settings.value("id").toString();
else
 value = "default";

8.8  Layout Example

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

39 of 67 19.12.2014 22:46

Access the example via WebSVN:
Layout Example [16]

Checkout the Qt example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-05

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

40 of 67 19.12.2014 22:46

9  Lesson 7: Threading Concepts

9.1  Blocking and Non-Blocking

When a user clicks at a GUI element and the respective signal triggers an action,
the UI thread is blocking while the slot executes. This means that further events
in the event queue are not handled until the slot returns.

If the application needs to be running time-consuming computations in a slot, the
GUI will not be responsive during that time. To keep the GUI responsive, long
running computations need to be non-blocking. This is achieved by executing
them concurrently to the UI thread.

9.2  Threads and Processes

A process is a program that is being executed in memory with its own memory
address range.

Multiple processes can run simultaneously by assigning a time slice to each
process (usually a few milliseconds). When a process has run out of time, its state
is frozen and execution is passed over to next process waiting to be resumed for
another time slice.

Whenever execution is resumed, the virtual address range tables of the MMU and
the entire CPU need to be saved, synchronized with the IO state and reloaded.
Process switching is therefore costly.

A more lightweight method to execute program code simultaneously is
threading. A thread shares its virtual address range with other threads of the
same process, so that switching from one thread to another just requires the
reloading of the CPU registers. Most modern CPUs have multiple copies of its
register set to be able to reactivate a set efficiently.

Since threads live in the same process, they share all the resources of that
process. If more than a single thread accesses a resource, the access to the
shared resource needs to be synchronized. Otherwise the asynchronous
access will lead to a so called race condition! In a race condition the
well-defined execution order is violated. As a result the program enters an
ill-defined logical state, where all sorts of bad things can happen. Most common
effects are a program freeze or a crash.

9.3  Race Condition

Supposed we have a situation where a single resource needs to be shared among
multiple users of the resource, but the resource can only be used by one user at a
time.

Simple example: Making Tom Kha Gai in a wok:

Get wok from its place1.
Put ingredients in wok2.
Cook and stir3.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

41 of 67 19.12.2014 22:46

Clean wok4.
Put wok back at its place5.

If multiple users want to make Tom Kha Gai they need to synchronize their use of
the shared resource wok by waiting until the other person is finished having
returned the wok to its place:

bool wok_at_place = true;

void tom_kha_gai()
{
 while (!wok_at_place) ; // busy waiting

 wok_at_place = false;

 put_ingredients();
 cook_and_stir();
 clean_wok();

 wok_at_place = true;
}

But what is the problem with the race condition then? It happens when claiming
the wok!

Supposed, two persons/threads are waiting for the wok. The first one sees the wok
at its place and wants to take it. But before it can do so by marking it as being no
longer at its place its time slice runs out and the second person/thread is
resumed. It also sees the wok at its place because the state has not yet been
updated by chance and starts claiming it. Now we have two persons cooking with
the same wok at the same time. Not good!

The problem that caused the race condition was that determining if the wok is
free and claiming it could be interrupted. This needs to be an atomic
non-interruptible operation for the process of cooking Tom Kha Gai to work out
well and tasty.

How is that achieved? The operation of requesting and claiming the wok needs to
be performed mutually exclusive for all persons/threads. For that purpose we use
a so called mutex.

Note: I might seem that the chance of being interrupted at the wrong time is very
small. Well, let’s have a closer look at the example. It turns out, that each person
that has not gained access to the resource is busy waiting for it to be returned.
Let’s call that the inactive person. If the wok is returned it gets claimed
immediately, but the active person/thread will be probably busy preparing the
next soup. Now we have the situation that the times slice for the active person is
probably not used up, so it will be busy waiting for the wok and claim the wok
immediately again. As a consequence, the inactive person will probably never get
to see the wok at all if the active person is not cooperative. There is only the slight
chance that program execution is interrupted in the very moment the active
person is finished. But for that case, the chances are equally high that program
execution is interrupted just a few steps later at the very moment of the race
condition.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

42 of 67 19.12.2014 22:46

9.4  Threads and Mutexes

In order to cook Tom Kha Gai concurrently, we have to solve two problems:

1) Use a mutually exclusive operation to claim the wok. 2) Establish fair sharing
practices.

Both problems are solved with a Mutex. A mutex can be locked and unlocked. If
one thread has locked a mutex other threads that want to do the same are put to
sleep to be woken up until the lock is released.

mutex wok;

void tom_kha_gai()
{
 wok.lock();

 put_ingredients();
 cook_and_stir();
 clean_wok();

 wok.unlock();
}

Has that solved the problem with the race condition then?

Yes, because locking and unlocking a mutex is an atomic operation! If there are
other persons that want to get the wok, they are put in waiting condition. Persons
in waiting condition are invoked when other persons return the lock on the same
mutex, so that the latter do not get to claim the wok again.

9.5  QThread and QMutex

With Qt we create a thread by subclassing from QThread. Calling the start()
method on a QThread object will execute the run() method in a new concurrent
thread. The wait() method waits until the thread is finished by returning from
run() (same as join with POSIX threads).

TomKhaGai with QThread:

#include <QtCore/QThread>
#include <QtCore/QMutex>

class TomKhaGai: public QThread
{
 public:

 void run()
 {
 wok.lock();

 put_ingredients();
 cook_and_stir();

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

43 of 67 19.12.2014 22:46

 clean_wok();

 wok.unlock();
 }

 ~TomKhaGai()
 {
 wait();
 }

 protected:

 static QMutex wok;
};

Now let’s have two persons cooking two soups:

TomKhaGai soup1, soup2;

soup1.start();
soup2.start();

9.6  Scoped Lock

There is no “scoped lock” like boost::mutex::scoped_lock lock(mutex) in plain Qt,
but it is easily setup:

class QScopedLock
{
 public:

 QScopedLock(QMutex &mutex)
 : mutex_(mutex)
 {
 mutex_.lock();
 }

 ~QScopedLock()
 {
 mutex_.unlock();
 }

 protected:

 QMutex &mutex_;
};

With that we rewrite run():

void run()
{

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

44 of 67 19.12.2014 22:46

 QScopedLock lock(wok);

 put_ingredients();
 cook_and_stir();
 clean_wok();
}

Ok, I cheated: There is a scoped lock in Qt, but it is named QMutexLocker.

9.7  Queued Connections

How to pass the produced soup to a consumer, e.g. to the main thread?

Passing messages between threads is easy with Qt. We simply pass objects
through a signal/slot connection via so called queued connections [17].

Passing a message through a regular slot is done via parametrization:

message sender:

emit signal("message");

message receiver:

public slots:
 void slot(QString &message);

Then the receiver is invoked from the same thread as the sender.

To invoke the receiver on a different thread, we connect the signal and the slot
with the option of a queued connection:

connect(sender, SIGNAL(signal(QString &)),
 receiver, SLOT(slot(QString &)),
 Qt::QueuedConnection);

Then a triggered signal in the sender thread has the effect of a copy of the
parameters being stored in the event queue. The sender returns immediately after
the copy has been posted. The copy is delivered to the receiver when the receiver
thread yields to the event loop.

This scheme works as long as
The type of the passed parameters is a class with a copy constructor.
Either the sender or the receiver have an event loop running.
The type of the parameter is known to Qt.

If the data type is unknown we register it before connecting the respective signal:

qRegisterMetaType<type>("type");

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

45 of 67 19.12.2014 22:46

9.8  Producer Consumer Example

class Bowl
{
public:

 Bowl() // default constructor
 : empty(true);
 {}

 Bowl(const Bowl &bowl) // copy constructor
 {
 bowl.pour(*this);
 }

 ~Bowl() // destructor
 {}

protected:

 bool empty;

 pour(Bowl &bowl)
 {
 bowl.empty = empty;
 empty = true;
 }

 void put_ingredients()
 {
 empty = false;
 }

 cook_and_stir()
 {
 sleep(5);
 }

public:

 void eat()
 {
 empty = true;
 }

};

class TomKhaGai: public QThread, public Bowl
{
 Q_OBJECT;

public:

 void run()
 {
 wok.lock();

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

46 of 67 19.12.2014 22:46

 put_ingredients();
 cook_and_stir();

 Bowl bowl;
 pour(bowl);

 wok.unlock();

 emit done(bowl);
 }

 ~TomKhaGai()
 {
 wait();
 }

protected:

 static QMutex wok;

signals:

 void done(Bowl &bowl);
};

class Guest
{
 Q_OBJECT;

public:

 Guest()
 {
 soup = new TomKhaGai;

 qRegisterMetaType<Bowl>("Bowl");

 connect(soup, SIGNAL(done(Bowl &)),
 this, SLOT(serve(Bowl &)),
 Qt::QueuedConnection);

 soup->start();
 }

 ~Guest()
 {
 delete soup;
 }

protected:

 TomKhaGai *soup;

private slots:

 void serve(Bowl &bowl)
 {

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

47 of 67 19.12.2014 22:46

 std::cout << "soup is being served" << std::endl;
 bowl.eat(); // mmh, deliciuos!
 }

};

Usage example:

{
 Guest angela; // soup is being served after 5s
 Guest horst; // soup is being served after 10s
} // destructor waits 10s

9.9  Mandelbrot Example

Another example of queued connections is the Mandelbrot Example [18].

in this example fractals are computed in a worker thread. The mouse position
seeds the fractal iteration. Once a fractal image is finished, the image is passed to
the main thread where it is displayed in a window. If another image is requested
before the last one is finished, the worker thread is told to cancel it and restart.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

48 of 67 19.12.2014 22:46

10  Lesson 8: A Non-Blocking Qt
Application

10.1  Job Queue

In the following we will outline another threading pattern: a job queue.

A job queue executes jobs one after another. There is not one thread for each job
but one worker thread that works off all jobs.

First let’s define a base class for a job. It is derived from std::string to encode
information about the job, e.g. a command line or file to work on. It also has a
pure virtual execute() method that does the job:

class Job: public std::string
{
 public:

 Job() : std::string() {}
 Job(const std::string &s) : std::string(s) {}
 virtual ~Job() {}

 virtual int execute() = 0;
};

Now we define a job queue:

typedef std::vector<Job *> Jobs;

And now we define a worker class that maintains the job queue:

class worker : public QThread
{
 Q_OBJECT;

 public:

 //! default constructor
 worker(QObject *parent=0)
 : QThread(parent)
 {
 failure=0;
 }

 //! destructor
 virtual ~worker()
 {abort_jobs();}

 void run_job(Job *job)
 {

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

49 of 67 19.12.2014 22:46

 block_jobs();
 jobs.push_back(job);
 unblock_jobs();
 start_jobs();
 }

 int finish_jobs()
 {
 wait4jobs();
 return(failure);
 }

 protected:

 virtual void block_jobs() {mutex.lock();}
 virtual void unblock_jobs() {mutex.unlock();}

 virtual void start_jobs()
 {
 if (!isRunning())
 start(LowPriority); // calls run() in a new thread

}

 virtual void wait4jobs() {wait();}

 virtual void run()
 {
 int errorcode;

 block_jobs();

 failure=0;

 while (!jobs.empty())
 {
 Job *job=jobs[0];

 unblock_jobs();

 errorcode=job->execute();

 if (!errorcode)
 emit finishedJob(*job);
 else
 {
 emit failedJob(*job, errorcode);
 failure++;
 }

 block_jobs();

 jobs.erase(jobs.begin());
 }

 unblock_jobs();
 }

 private:

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

50 of 67 19.12.2014 22:46

 Jobs jobs;
 int failure;

 QMutex mutex;

 signals:

 void finishedJob(const std::string &job);
 void failedJob(const std::string &job, int errorcode);
};

10.2  Threaded Image Conversion

The application “DropPNG” accepts a drop event and starts an image conversion
job for each dropped file:

The image conversion jobs are executed in a background thread:

worker *thread = new worker;

When a drop event happens, the job queue of the background thread gets another
job:

void dropEvent(QDropEvent *event)
{
 const QMimeData *mimeData = event->mimeData();

 if (mimeData->hasUrls())
 {
 event->acceptProposedAction();

 QList<QUrl> urlList = mimeData->urls();

 for (int i=0; i<urlList.size(); i++)
 {

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

51 of 67 19.12.2014 22:46

 QUrl qurl = urlList.at(i);
 QString url = qurl.toString();

 if (url.startsWith("file://"))
 {
 url = url.remove("file://");

 std::cout << "start job for " << url.toStdString() << std::endl;
// debug

 MyConverterJob *job = new
MyConverterJob(url.toStdString());

 thread->run_job(job);
 }
 }
 }
}

When executing a job in the background thread, the file is loaded and saved as
PNG:

class MyConverterJob: public Job
{
 public:

 MyConverterJob() : Job() {}
 MyConverterJob(const std::string &s) : Job(s) {}
 virtual ~MyConverterJob() {}

 virtual int execute(worker *worker)
 {
 // get file name to be converted
 QString filename(c_str());

 // try to load file as image
 QImage image;
 if (!image.load(filename)) return(1);

 // remove suffix from file name to yield output name
 QString output = filename;
 if (output.endsWith(".gif", Qt::CaseInsensitive))
output.truncate(output.size()-4);
 if (output.endsWith(".jpg", Qt::CaseInsensitive))
output.truncate(output.size()-4);
 if (output.endsWith(".tif", Qt::CaseInsensitive))
output.truncate(output.size()-4);
 output.append(".png");

 // save image as png
 if (!image.save(output, "PNG")) return(2);

 return(0);
 }
};

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

52 of 67 19.12.2014 22:46

Access the full example via WebSVN:
Threading Example [19]

Checkout the Qt example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/example-07

10.3  KDE4 Integration

With OpenSuse 12.1 the KDE4 desktop is the default desktop manager. For
programs to show up in the start menu we need to register them. To do so, we
provide basic information in a .desktop file.

To register our image conversion app, we create the file “DropPNG.desktop” in
the /usr/share/applications/ folder:

[Desktop Entry]
Type=Application
Exec=DropPNG %U
Icon=utilities-terminal
Terminal=false
Name=DropPNG
Categories=Application;Graphics;

Putting a .desktop file in the ~/.local/share/applications folder registers the app
for a single user. Putting it in the /usr/share/autostart folder will start it
automatically when a user logs in.

For an automatic installation, we add the above .desktop file to our source
directory. Next, we modify the CMakelists.txt file to contain an install target that
copies the .desktop file to the appropriate directory. The Qt executable is also
copied to the appropriate binary directory:

IF (UNIX AND NOT APPLE)
 INSTALL(FILES DropPNG.desktop DESTINATION /usr/share/applications)
ENDIF (UNIX AND NOT APPLE)

INSTALL(
 TARGETS DropPNG
 RUNTIME DESTINATION bin
)

Now after running “make install”, we can right click at the DropPNG entry in the
start menu and add it as a shortcut to the desktop.

10.4  KDE4 Drop Icon

Dragging files onto a widget is platform independent.

Dragging a file onto a desktop icon is platform dependent. We exercise it for
KDE4.

First we place the DropPNG application into a panel, since only panel apps can be
dropped onto.

When dropping a file from the File Manager view onto a panel icon, the dropped

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

53 of 67 19.12.2014 22:46

files are passed to the opening program as standard command line arguments. So
they end up to be parameters to int main(int argc, char *argv[]).

For that to work the Exec line of the .desktop file needs to contain
%f as a place holder for an file name
%F for a list of file names
%u as a place holder for an url
%U for a list of urls

To process one argument in the background thread, we add a process method

void MyQConverterWidget::process(QString file)
{
 if (file.startsWith("file://"))
 file = file.remove("file://");

 MyConverterJob *job = new MyConverterJob(file.toStdString());

 thread->run_job(job);
}

and pass all arguments from the command line to it:

QStringList args = QCoreApplication::arguments();
for (int i=1; i<args.size(); i++)
 converter.process(args[i]);

10.5  KDE4 Examples

Other Qt example applications for KDE4:

LibMini’s QT Earth Viewer [20]
QT V^3 Volume Renderer [21]

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

54 of 67 19.12.2014 22:46

11  Lesson 9: Qt Mobile

11.1  Qt Mobile

Qt is on the verge of being ported to most mobile platforms via an abstraction
layer called Lighthouse.

Working (and maybe still experimental ports) are available for
Android
Blackberry
Symbian

It seams that there will be no short-term support for
iOS
WinRT

since the licensing conditions do not allow the execution of code from RAM, which
is necessary for the V8 Javascript JIT compiler as the backend of the Lighthouse
project. Recent news indicate that there is work an a JS interpreter v4vm, which
does not have those restrictions, but will have reduced performance compared to
V8.

The current state for Android is that Qt 5.0 has support for Android for native Qt
widget classes and QML, although it is recommended to wait for Qt 5.2 for
commercial applications.

The Qt support is brought to Android via a community port of Qt named
Necessitas [22].

11.2  Qt Mobile Features

QSystemDeviceInfo
Battery, Temperature, Manufacturer, Keyboard types

QGeoPositionInfoSource
GPS location
delivers QGeoPosition (polar coordinates → latitude/longitude)

Mobile Device Sensors
QAccelerometer, QGyroscope, QMagnetometer
Angle and Momentum of Mobile Device

Media
QAudioInput, QAudioOutput
QCamera

Networking
QMessage, QContact

etc…

11.3  Getting Started with Android Qt

Necessitas is the KDE community port of Qt for the Android platform. Here we are
going to make a few first steps on the Android platform with Qt.

Let’s grab the Necessitas SDK and install it!

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

55 of 67 19.12.2014 22:46

 http://necessitas.kde.org/necessita/necessitas_sdk_installer.php

Here is a youtube video for getting started on Linux:

(:html5video filename=Qt-UI/AndroidQt:)
AndroidQt.mp4

It is strongly suggested to use a Linux box as Necessitas is in beta status at the
time of this writing!

Now, that we have installed the Necessitas SDK, what can we do with it? We open
QtCreator and manage and develop our projects with it.

To do so, we should fire up QtCreator (on Linux start QtCreator/bin/necessitas
from the cmd line) and make sure that QtCreator can see the Android Qt
framework. Select the Build & Run section of the program options, then select the
Qt Versions tab and check that it reads something like the following:

Necessitas 4.8.2n for Android armv5.

If that’s the case, we are ready to create a new Qt Mobile Android project: Click
on the Project tab on the left and create a new project of the type “Mobile Qt
Application”.

You will be asked to choose the ARM processor architecture. In the Necessitas
SDK there is support for ARM v5 and ARM v7a. I am choosing ARM v5 for
backwards compatibility.

Our deployment platform is a Samsung Galaxy Ace 2 with an ARM Cortex-A8
processor core implementing the ARM v7 instruction set architecture. Still, it is
better to choose ARM v5, since the emulator does not appear to be working with
ARM v7a yet.

Now that we have the toolchain installed and ready to be used, we want to make a
test by deploying a Qt Mobile example app. There is a simple test case available
from the Qt developer pages that displays the battery status with the Qt Mobile
frame work on a Nokia phone (or the Maemo simulator for Symbian phones):

 http://doc.qt.digia.com/qtcreator-2.1/creator-mobile-example.html

We am going to do the same, but deploy a slightly modified Qt Mobile example on
our Android smartphone.

That is, we are not going to simply connect the battery status to a widget via

#include <QSystemDeviceInfo>

QSystemDeviceInfo *deviceInfo = new QSystemDeviceInfo(this);

connect(deviceInfo, SIGNAL(batteryLevelChanged(int)), widget,
SLOT(setValue(int)));

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

56 of 67 19.12.2014 22:46

but we are going to listen to geospatial positions updated from the GPS receiver
as outlined at

 http://qt-project.org/wiki/Retrieve_Location_Using_Qt_Mobility

11.4  Creating a new Android Qt Project

Now, we are going to create a new project with QtCreator to display the battery
status as a starting point and change that later on to spot our GPS location.

In the QtCreator we select File → New File or Project → Applications → Mobile Qt
Application → Choose.

Then we provide a name for the mobile application. For our example app that will
show the actual GPS postion we choose “GPS-Spot”.

Next we confirm to use the default build kit for the armv5 instruction set. Done.

We have created a project template that contains the following files:
GPS-Spot.desktop
GPS-Spot.pro
GPS-Spot64.png
GPS-Spot80.png
GPS-Spot_harmattan.desktop
deployment.pri
main.cpp
mainwindow.cpp
mainwindow.h
mainwindow.ui

The files come with the necessary boiler plate code that we have to modify, as
described in the following sections.

Declaring the Qt Mobility API

To use the Qt Mobility APIs we have to modify the .pro file to declare the Qt
Mobility APIs that you use. Double click at the .pro file in the tree view of the edit
pane of QtCreator to open an editor window.

This example uses the Mobility System Info API, so we must declare it, as
illustrated by the following code snippet:

 CONFIG += mobility
 MOBILITY = systeminfo

Completing the MainWindow Header File

In the Projects view click on the Edit icon on the left and double-click the
mainwindow.h file to open it for editing.

We include the System Device Info header file, as illustrated by the following code
snippet:

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

57 of 67 19.12.2014 22:46

#include <QSystemDeviceInfo>

Right after the header files (not before!) we declare to use the Qt mobility name
space, as illustrated by the following code snippet:

QTM_USE_NAMESPACE

Also declare a private member variable as a pointer to a device info object to be
created later on:

private:
 QSystemDeviceInfo *deviceInfo_;

Designing the User Interface

Double-click the mainwindow.ui file in the Projects editor view to launch the
integrated Qt Designer.

Drag and drop a text label (QLabel) widget to the canvas.

In the Properties pane in the upper left, change the objectName of the QLabel
object from “label” to “batteryLabel”.

The necessary code to setup all designed UI elements of a widget is integrated
into an auto-generated “ui” object. This object is is created in the constructor of
the respective class. For example, the constructor of the MainWindow class
creates a ui object of the type UI:MainWindow. When calling its setupUI method,
the GUI elements are constructed according to the description of the
mainwindow.ui file:

MainWindow::MainWindow(QWidget *parent)
 : QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

58 of 67 19.12.2014 22:46

}

All designed gui elements become a member variable of the ui object, referenced
to by ui→objectName. For example, to set a text on a label object with the name
objectName we call:

ui->objectName->setText("text");

Completing the MainWindow Source File

In the Projects view, double-click the mainwindow.cpp file to open it for editing.

Add the following code to the MainWindow constructor to read the battery level
from the device info API and pass changing levels on to the battery label:

deviceInfo_ = new QSystemDeviceInfo(this);

ui->batteryLabel->setNum(deviceInfo_->batteryLevel());

connect(deviceInfo_, SIGNAL(batteryLevelChanged(int)),
 ui->batteryLabel, SLOT(setNum(double)));

And finally, we delete the device info in the MainWindow destructor:

~MainWindow()
{
 delete deviceInfo_;

 delete ui;
}

11.5  Running an Android Qt App

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

59 of 67 19.12.2014 22:46

Now that you have all the necessary code, click on the “Hammer” symbol on the
left to compile the project and check for errors and warnings.

To test it, we need to create a simulation device for the emulator.

In QtCreator we select Tools → Options and switch to the Android tab. Now we
click at the “Start AVD Manager” button and create a new SD Card with 1024 MiB
space for an Android Virtual Device with API Level 10 (Android 2.3.3). We also
select WVGA 480×800 screen resolution matching the resolution of our Samsung
Galaxy Ace 2 smartphone.

The best way is to clone the settings of the Google Nexus S Device shown in the
device tab, which has the same screen resolution as the Galaxy Ace 2.

So we create an Android Virtual Device (AVD) from the Google Nexus S device
and name it “Ace2″.

Click on the Ace2 AVD and start the emulator. Keep the emulator window open.

We download the “Ministro II.apk” from here [23] and run the following cmd line
to install the Ministro package on the AVD:

adb install <full path file name of the ministro apk>

The command “adb” stands for Android Debug Bridge. It is located in the
“android-sdk/platform-tools” directory of the SDK.

Back in Qt Creator we need to adjust a final setting before we can start the app in
the simulator: click at the Project icon on the left side and switch to the tab of the
project. Under “Build&Run” we click at the “Run” tab of the “Necessitas SDK for
Android” kit and change the deploy settings to “Deploy local Qt libraries”.

Now click at the green play button to run the app in the Qt Simulator.

Let’s tweak the app a bit: we connect the battery level changed signal to a private
slot setBatteryLevel(int) and create a more verbose output:

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

60 of 67 19.12.2014 22:46

void MainWindow::setBatteryLevel(int level)
{
 QString text=QString("battery=%1%").arg(level);
 ui->batteryLabel->setText(text);
}

11.6  Android Qt GPS Example

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

61 of 67 19.12.2014 22:46

First, we add another label named “spotLabel” with the integrated Qt Designer.

Then we setup a slot that receives location updates by calling the following
setupGPS() method in the MainWindow constructor:

void MainWindow::setupGPS()
{
 // obtain the location data source
 locationInfo_ =
QGeoPositionInfoSource::createDefaultSource(this);

 // select positioning method

locationInfo_->setPreferredPositioningMethods(QGeoPositionInfoSource::AllPositioningMethods);

 // when the position has changed the setGPSLocation slot is called
 connect(locationInfo_,
SIGNAL(positionUpdated(QGeoPositionInfo)),
 this, SLOT(setGPSLocation(QGeoPositionInfo)));

 // start listening for position updates
 locationInfo_->startUpdates();
}

And output the updated locations, if any, in lat/lon coordinates:

void MainWindow::setGPSLocation(QGeoPositionInfo geoPositionInfo)
{
 QString text="Location=unknown";

 if (geoPositionInfo.isValid())
 {
 // get the current location coordinates
 QGeoCoordinate geoCoordinate = geoPositionInfo.coordinate();

 // transform coordinates to lat/lon
 qreal latitude = geoCoordinate.latitude();
 qreal longitude = geoCoordinate.longitude();

 text=QString("Latitude=%1\nLongitude=%2")
 .arg(latitude,0,'g',8)
 .arg(longitude,0,'g',8);
 }

 ui->spotLabel->setText(text);
}

Add the following line to the .pro file:

 MOBILITY += location sql

Make sure that “Deploy local Qt libraries” is checked again. Once the libraries
have been deployed the first time, this option is unchecked automatically. To

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

62 of 67 19.12.2014 22:46

deploy additional libraries it needs to be checked again.

To get access to the location services we need to add appropriate permissions
[24] to the Android manifest.

In the project view, open the “Run” Settings and under “Package Configuration”
select the “Permissions” tab. Add the following permissions:

ACCESS_COARSE_LOCATION
ACCESS_FINE_LOCATION

Don’t forget to save!

Also select the “Libraries” tab and check that QtLocation and QtSql are selected.

We run the app and provide a test gps location by connecting to the emulator via
telnet:

 telnet localhost 5554

Then we can use the geo command to set a geographic position

 geo fix <longitude value> <latitude value>

For example, the geographic position of Kailua, Hawai’i:

 geo fix −157.739515 21.397370

For some reason the GPS location slot is not receiving any updates. Instead the
updateTimeout signal is emitted. Also, the value of lastKnownPosition can be
bogus when the GPS receiver tries to reestablish a lost satellite connection. After
excessive reading and testing, giving me major headaches, it appears that Qt
Mobility (Qt 4.8) is to be blamed.

As a workaround we connect the following timeout slot to the updateTimeout
signal, so that at least we are getting notified that we do not have a GPS position
available:

void MainWindow::timeout()
{
 setGPSLocation(locationInfo_->lastKnownPosition());
 locationInfo_->startUpdates();
}

It appears we have to wait for Qt 5.0 to fix the GPS support for the emulator. We’ll
follow the latest news to monitor work on Qt5.

Alternatively, we try the app on a real Android device and not the emulator.

11.7  Android Qt on a Samsung Galaxy Ace 2

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

63 of 67 19.12.2014 22:46

First off, we need to see if the Android Debug Bridge recognizes any Android
device plugged in via USB. So plug in your phone and run:

 adb devices

If you see it listed, then you are almost done:
install Ministro on your device

adb -d install <path to Ministro apk>
install your App on your device

adb -d install <path to your apk>

If you do not see it listed, make sure that it is actually connected by running
“lsusb”. If you see a Android device connected on the USB bus, then we adhere to
Google’s instructions on setting up a hardware device [25].

Let’s see how it works out for the Ace 2 with OpenSuse 12.1:

> adb devices
List of devices attached

So adb does not see my Ace 2, yet.

> lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub
Bus 001 Device 004: ID 058f:a014 Alcor Micro Corp.
Bus 001 Device 005: ID 0bda:0139 Realtek Semiconductor Corp.
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 006: ID 0cf3:3005 Atheros Communications, Inc. AR3011 Bluetooth
Bus 003 Device 003: ID 04e8:6860 Samsung Electronics Co., Ltd

But it is connected to Bus 3 Device 3, good!

So we follow the Google instructions:
Enable USB debugging on your device.
On most devices running Android 3.2 or older, you can find the option under
Settings → Applications → Development. On Android 4.0 and newer, it’s in
Settings → Developer options.
Note: On Android 4.2 and newer, Developer options is hidden by default. To
make it available, go to Settings → About phone and tap Build number seven
times. Return to the previous screen to find Developer options.

1.

Also allow Mock locations on your device.2.

> adb devices
List of devices attached
9E3838FEF88FEBEA47D7DCE99F168BE device

Here we go :)

> adb -d install ~/Projects/Ministro\ II.apk
145 KB/s (542653 bytes in 3.631s)

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

64 of 67 19.12.2014 22:46

 pkg: /data/local/tmp/Ministro II.apk
Success

Now run your application in QtCreator and it will automatically recognize the
attached Android device. Don’t forget to check “Deploy local Qt libraries”!

Some indoor screen shots /wo and /w GPS switched on:

Access the full GPS-Spot example via WebSVN:
Qt Mobility Example [26]

Checkout the Qt Mobility example via SVN:
svn co svn://schorsch.efi.fh-nuernberg.de/qt-examples/GPS-Spot

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

65 of 67 19.12.2014 22:46

12  Lesson 10: Outlook

12.1  Further Reading

Special Widgets
Qt Scene Graph
Qt Phonon Media Player

ModelView Widgets
Adaptors and Delegates from Form to Model
Rapid Prototyping

QML and Javascript
Qt and Python

Pyside, PyQt
Scripting

Qt Linuguist
Application Translation and Localization

Qt Mobile
Lighthouse
KDE.org hosting Ministro [27]

Links

qt-project.org/doc/qt-4.8/threads-mandelbrot.html1.
www.heise.de/newsticker/meldung/Alpha-Version-von-Qt-5-1-unterstuetzt-Android-
und-iOS-1837467.html

2.

schorsch.efi.fh-nuernberg.de/mewiki/index.php/Tutorials/SvnHowTo3.
packages.ubuntu.com4.
qt-project.org/doc/qt-4.85.
qt-project.org/doc/qt-5.0/qtdoc/qtexamplesandtutorials.html6.
qt-project.org/books7.
schorsch.efi.fh-nuernberg.de/websvn8.
qt-project.org/doc/qt-4.8/qpainter.html9.
qt-project.org/doc/qt-4.8/coordsys.html10.
schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/example-02

11.

schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/example-06

12.

schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/example-03

13.

schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/example-04

14.

qt-project.org/doc/qt-4.8/qcheckbox.html#signals15.
schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/example-05

16.

qt-project.org/doc/qt-4.8/threads-qobject.html17.
qt-project.org/doc/qt-4.8/threads-mandelbrot.html18.
schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/example-07

19.

code.google.com/p/libmini20.
code.google.com/p/vvv21.
blog.qt.digia.com/blog/2013/03/13/preview-of-qt-5-for-android22.
filesmaster.kde.org/necessitas/installer/release/Ministro%20II.apk23.
developer.android.com/reference/android/Manifest.permission.html24.
developer.android.com/tools/device.html#setting-up25.
schorsch.efi.fh-nuernberg.de/websvn/listing.php?repname=qt-examples&
path=/GPS-Spot

26.

www.omat.nl/2012/08/11/how-necessitas-grew-to-be-a-20tb-of-traffic-a-month-project27.

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

66 of 67 19.12.2014 22:46

Ohm | Lectures / GUI Development with Qt http://schorsch.efi.fh-nuernberg.de/roettger/index...

67 of 67 19.12.2014 22:46

