
Qt Quick for Qt Developers 
Introduction to Qt Quick 

Based on Qt 5.4 (QtQuick 2.4) 
 



Contents 

•  30,000 feet Qt overview  
•  Meet Qt Quick  
•  Concepts  

© 2015 2 



Objectives 

•  Overview of the Qt library 
•  Qt framework presentation 
•  Qt Quick inside the Qt framework  

•  Understanding of QML syntax and concepts 
•  Elements and identities  
•  Properties and property binding  

•  Basic user interface composition skills 
•  Familiarity with common elements  
•  Understanding of anchors and their uses  
•  Ability to reproduce a design  

© 2015 3 



© 2015 4 

The Leading C++ Cross-Platform Framework 

Used by over 800,000 developers in 70+ industries 
Proved & tested technology – since 1994 

Cross-Platform 
Class Library 

One Technology for 
All Platforms 

Integrated 
Development 

Tools 
Shorter Time-to-Market 

Cross-Platform 
IDE, Qt Creator 

Productive development 
environment 



© 2015 5 

Qt UI Offering – Choose the Best of All Worlds 
 

Qt Quick 
 
C++ on the back, declarative UI design 
(QML) in the front for beautiful, modern 
touch-based User Experiences. 

Qt Widgets 
 
Customizable C++ UI controls for 
traditional desktop look-and-feel. Also 
good for more static embedded UIs for 
more limited devices / operating systems. 

Web / Hybrid 
 
Use HTML5 for dynamic web documents, 
Qt Quick for native interaction. 



© 2015 6 

The Widget World 



© 2015 7 

The Graphics View World  



© 2015 8 

The OpenGL World  



© 2015 9 

The Qt Quick World  



© 2015 10 

Qt Applications Are Native Applications 
 

Qt / OSX 
 
Cocoa 
Mac Kernel 
MacHW 

Qt / Android 
 
Android NDK 
Android Kernel  
Android HW 

Qt / Windows 
 

Windows GDI 
Windows Kernel 

PC HW 

Qt / Embedded 
 

X11, Wayland, EGLFS 
Linux Kernel 

Embedded HW 

Qt Application 

QtGui 
QtCore 
QtNetwork 

QtSql 
QtMultimedia 
etc.  



Qt Quick Requirements 

•  Platform must support OpenGL ES2 
•  Needs at least QtCore, QtGui, QtQml, and QtQuick modules 
•  Other modules can be used to add new features:  

•  QtGraphicalEffects: add effects like blur, dropshadow...  
•  Qt3D:3D programming in QML 
•  QtMultimedia: audio and video items, camera 
•  QtWebEngine: web view 
•  …  

© 2015 11 



Qt Modules  

The Qt framework is split into modules: 
•  Examples: QtCore, QtGui, QtWidgets, QtNetwork, QtMultimedia... 
•  Modules contain libraries, plugins and documentation. 
•  Libraries are linked to your applications 
•  Libraries group a set of common features (xml, dbus, network...) 
•  Qt Core is mandatory for all Qt applications  

© 2015 12 



Meet Qt Quick 
 



What is Qt Quick? 

A set of technologies including: 
•  Declarative markup language: QML 
•  Imperative Language: JavaScript 
•  Language runtime integrated with Qt 
•  C++ API for integration with Qt 

applications 
•  QtCreator IDE support for the QML 

language 

© 2015 14 



Philosophy of Qt Quick  

•  Intuitive User Interfaces 
•  Design-Oriented 
•  Rapid Prototyping and Production 
•  Easy Deployment 
•  Enable designer and developers to work on the same sources  

© 2015 15 



© 2015 16 

Rapid Workflow with Qt Quick 
 

Developer 

Declarative UI Design 
 
Stunningly Fluent Modern User Interfaces, written with 
QML. Ideal for rapid UI prototyping. 

Imperative Logic 
 
Power of Cross-Platform Native Qt/C++ 
 

Qt Quick 

Core 
 
Processes, Threads, 
IPC, Containers, 
I/O, Strings, 
Etc. 

Network 
 
HTTP 
FTP 
SSL 
 

Sql 
 
SQL 
& 
Oracle 
Databases 

XM
L 

Bl
ue

to
ot

h 

Po
si

tio
ni

ng
 

N
FC

 

Se
ri

al
 P

or
t 

Designer 

+ Direct Hardware Access 



Concepts 
 



What Is QML? 

Declarative language for User Interface elements:  
•  Describes the user interface  

•  What elements look like  
•  How elements behave  

•  UI specified as tree of elements with properties  

© 2015 18 



A Tree of Elements  

•  Let's start with an example...  

© 2015 19 



Viewing an Example  

•  Locate the example: rectangle.qml  
•  Launch the QML runtime:  

 qmlscene rectangle.qml  

© 2015 20 

import QtQuick 2.4 

  
Rectangle {  

    width: 400;  

    height: 400  

    color: "lightblue"  

}  

Demo: qml-intro/ex-concepts/rectangle.qml 



Elements 

•  Elements are structures in the markup 
language  

•  Represent visual and non-visual parts  

•  Item is the base type of visual 
elements 

•  Not visible itself  
•  Has a position, dimensions 
•  Usually used to group visual elements  
•  Rectangle, Text, TextInput,...  

•  Non-visual elements: 
•  States, transitions,...  
•  Models, paths,… 
•  Gradients, timers, etc.  

•  Elements contain properties 
•  Can also be extended with custom 

properties 

© 2015 21 

See Documentation: QML Elements 



Properties 

Elements are described by properties: 
•  Simple name-value definitions 

•  width, height, color,… 
•  With default values 
•  Each has a well-defined type 
•  Separated by semicolons or line breaks  

•  Used for 
•  Identifying elements (id property)  
•  Customizing their appearance 
•  Changing their behavior  

© 2015 22 



Property Examples 

•  Standard properties can be given 
values:  

 

•  Grouped properties keep related 
properties together: 

•  Identity property gives the element a 
name:  

•  Identifying elements (id property)  
•  Customizing their appearance 
•  Changing their behavior  

© 2015 23 

Text {  

    text: "Hello world"  

    height: 50  

} 
Text {  

    id: label  

    text: "Hello world"  

} 

Text {  

    font.family: "Helvetica"  

    font.pixelSize: 24  

    // Prefferred syntax  

    // font { family: "Helvetica"; pixelSize: 24 }  

} 



Property Examples 

•  Attached properties are applied to 
elements:  

•  KeyNagivation.tab is not a 
standard property of TextInput 

•  Is a standard property that is attached 
to elements  

•  Custom properties can be added to 
any element:  

© 2015 24 

TextInput {  

    text: "Hello world"  

    KeyNavigation.tab: nextInput  

} 

Rectangle {  

    property real mass: 100.0  

}  
 

Circle {  

    property real radius: 50.0  

} 



© 2015 25 

Binding Properties  

•  Properties can contain expressions  
•  See above: width is  twice the height  

•  Not just initial assignments 
•  Expressions are re-evaluated when needed  

Item {  

    width: 400; height: 200  

    Rectangle {  

        x: 100; y: 50; width: height * 2; height: 100 

        color: "lightblue"  

    }  

} 

Demo: qml-intro/ex-concepts/expressions.qml 



Identifying Elements  

The id property defines an identity for an element  
•  Lets other elements refer to it 

•  For relative alignment and positioning  
•  To use its properties 
•  To change its properties (e.g., for animation) 
•  For re-use of common elements (e.g., gradients, images)  

•  Used to create relationships between elements  

© 2015 26 

See Documentation: Property Binding 



© 2015 27 

Using Identities  

Demo: qml-intro/ex-concepts/identity.qml 

Item {  

    width: 300; height: 115  

    Text {  

        id: title  

        x: 50; y: 25 text: "Qt Quick"  

        font.family: "Helvetica"; font.pixelSize: 50  

    }  

    Rectangle {  

        x: 50; y: 75; height: 5  

        width: title.width  

        color: "green"  

    }  

}  



Viewing an Example  

•  Property Text element has the identity, title 
•  Property width of Rectangle bound to width of title 

© 2015 28 

Text {  

    id: title  

    x: 50; y: 25 text: "Qt Quick"  

    font.family: "Helvetica"; font.pixelSize: 50  

}  

Rectangle {  

    x: 50; y: 75; height: 5  

    width: title.width  

    color: "green"  

}  



Basic Types 

Property values can have different 
types:  

•  Numbers (int and real): 400 and 1.5 
•  Boolean values: true and false 
•  Strings: “HelloQt”  
•  Constants: AlignLeft  

•  Lists:[...]  
•  One item lists do not need brackets 

•  Scripts:  
•  Included directly in property definitions  

•  Other types: 
•  colors, dates, rects, sizes, 3Dvectors,...  
•  Usually created using constructors  

© 2015 29 

See Documentation: QML Types 



© 2015 30 

Behind the Scene 



Summary 

•  QML defines user interfaces using elements and properties 
•  Elements are the structures in QML source code  
•  Items are visual elements 

•  Standard elements contain properties and methods  
•  Properties can be changed from their default values  
•  Property values can be expressions 
•  Id properties give identities to elements  

•  Properties are bound together 
•  When a property changes, the properties that reference it are updated  

•  Some standard elements define methods  
•  A range of built-in types is provided  

© 2015 31 



Questions 

•  How do you load a QML module? 
•  What is the difference between Rectangle and width? 
•  How would you create an element with an identity? 
•  What syntax do you use to refer to a property of another element?  

© 2015 32 



Lab – Items  

The image on the right shows two items and two 
child items inside a 400 × 400 rectangle.  

1.  Recreate the scene using Rectangle items.  
2.  Can items overlap? Experiment by moving the light 
blue or green rectangles.  
3.  Can child items be displayed outside their parents? 
Experiment by giving one of the child items negative 
coordinates.  

© 2015 33 


